Maison > développement back-end > Tutoriel Python > DéplacementMNIST dans PyTorch

DéplacementMNIST dans PyTorch

Linda Hamilton
Libérer: 2024-12-17 04:35:25
original
175 Les gens l'ont consulté

Achetez-moi un café☕

*Mon message explique Moving MNIST.

MovingMNIST() peut utiliser l'ensemble de données Moving MNIST comme indiqué ci-dessous :

*Mémos :

  • Le 1er argument est root (Required-Type:str ou pathlib.Path). *Un chemin absolu ou relatif est possible.
  • Le 2ème argument est split(Optional-Default:None-Type:str) : *Mémos :
    • Aucun, "train" ou "test" ne peut y être défini.
    • Si ce n'est aucun, les 20 images (images) de chaque vidéo sont renvoyées, en ignorant split_ratio.
  • Le 3ème argument est split_ratio(Optional-Default:10-Type:int) : *Mémos :
    • Si split est "train", data[:, :split_ratio] est renvoyé.
    • Si split est "test", data[:, split_ratio:] est renvoyé.
    • Si split est Aucun, il est ignoré. en ignorant split_ratio.
  • Le 4ème argument est transform(Optional-Default:None-Type:callable).
  • Le 5ème argument est download(Optional-Default:False-Type:bool) : *Mémos :
    • Si c'est vrai, l'ensemble de données est téléchargé depuis Internet vers la racine.
    • Si c'est vrai et que l'ensemble de données est déjà téléchargé, il est extrait.
    • Si c'est vrai et que l'ensemble de données est déjà téléchargé, rien ne se passe.
    • Il devrait être faux si l'ensemble de données est déjà téléchargé car il est plus rapide.
    • Vous pouvez télécharger et extraire manuellement l'ensemble de données à partir d'ici, par exemple. data/MovingMNIST/.
from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data"
)

all_data = MovingMNIST(
    root="data",
    split=None,
    split_ratio=10,
    download=False,
    transform=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

len(all_data), len(train_data), len(test_data)
# (10000, 10000, 10000)

len(all_data[0]), len(train_data[0]), len(test_data[0])
# (20, 10, 10)

all_data
# Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data

all_data.root
# 'data'

print(all_data.split)
# None

all_data.split_ratio
# 10

all_data.download
# <bound method MovingMNIST.download of Dataset MovingMNIST
#     Number of datapoints: 10000
#     Root location: data>

print(all_data.transform)
# None

from torchvision.datasets import MovingMNIST

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 3))

plt.subplot(1, 3, 1)
plt.title("all_data")
plt.imshow(all_data[0].squeeze()[0])

plt.subplot(1, 3, 2)
plt.title("train_data")
plt.imshow(train_data[0].squeeze()[0])

plt.subplot(1, 3, 3)
plt.title("test_data")
plt.imshow(test_data[0].squeeze()[0])

plt.show()
Copier après la connexion

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image)
    plt.show()

show_images(data=all_data[0].squeeze(), main_title="all_data")
show_images(data=train_data[0].squeeze(), main_title="train_data")
show_images(data=test_data[0].squeeze(), main_title="test_data")
Copier après la connexion

MovingMNIST in PyTorch

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST

all_data = MovingMNIST(
    root="data",
    split=None
)

train_data = MovingMNIST(
    root="data",
    split="train"
)

test_data = MovingMNIST(
    root="data",
    split="test"
)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 8))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    col = 5
    for i, image in enumerate(data, start=1):
        plt.subplot(4, 5, i)
        plt.tight_layout(pad=1.0)
        plt.title(i)
        plt.imshow(image.squeeze()[0])
        if i == col:
            break
    plt.show()

show_images(data=all_data, main_title="all_data")
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")
Copier après la connexion

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
import matplotlib.animation as animation

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

figure, axis = plt.subplots()

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `ArtistAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
images = []
for image in all_data[0].squeeze():
    images.append([axis.imshow(image)])
ani = animation.ArtistAnimation(fig=figure, artists=images,
                                interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `ArtistAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ `FuncAnimation()` ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# def animate(i):
#     axis.imshow(all_data[0].squeeze()[i])
#
# ani = animation.FuncAnimation(fig=figure, func=animate,
#                               frames=20, interval=100)
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ `FuncAnimation()` ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ani.save('result.gif') # Save the animation as a `.gif` file

plt.ioff() # Hide a useless image

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
HTML(ani.to_jshtml()) # Animation operator
# HTML(ani.to_html5_video()) # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

# ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ Show animation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
# plt.rcParams["animation.html"] = "jshtml" # Animation operator
# plt.rcParams["animation.html"] = "html5" # Animation video
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Show animation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Copier après la connexion

MovingMNIST in PyTorch

MovingMNIST in PyTorch

from torchvision.datasets import MovingMNIST
from ipywidgets import interact, IntSlider

all_data = MovingMNIST(
    root="data"
)

import matplotlib.pyplot as plt
from IPython.display import HTML

def func(i):
    plt.imshow(all_data[0].squeeze()[i])

interact(func, i=(0, 19, 1))
# interact(func, i=IntSlider(min=0, max=19, step=1, value=0))
# ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ Set the start value ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
plt.show()
Copier après la connexion

MovingMNIST in PyTorch

MovingMNIST in PyTorch

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal