Maison > développement back-end > Tutoriel Python > StanfordCars dans PyTorch

StanfordCars dans PyTorch

Barbara Streisand
Libérer: 2024-12-23 21:38:11
original
756 Les gens l'ont consulté

Achetez-moi un café☕

*Mon message explique Stanford Cars.

StanfordCars() peut utiliser l'ensemble de données Stanford Cars comme indiqué ci-dessous :

*Mémos :

  • Le 1er argument est root (Required-Type:str ou pathlib.Path). *Un chemin absolu ou relatif est possible.
  • Le 2ème argument est split(Optional-Default:"train"-Type:str). *"train" (8 144 images) ou "test" (8 041 images) peuvent y être définis.
  • Le 3ème argument est transform(Optional-Default:None-Type:callable).
  • Le 4ème argument est target_transform(Optional-Default:None-Type:callable).
  • Le 5ème argument est download(Optional-Default:False-Type:bool) : *Mémos :
    • Gardez faux, car si c'est vrai, une erreur se produit car l'URL d'origine est cassée.
    • Vous devez donc télécharger et extraire manuellement archive.zip à partir d'ici, archive.zip à partir d'ici et car_devkit.tgz vers data/stanford_cars/ comme indiqué ci-dessous : *Mémos :
      • cars_test_annos_withlabels (1).mat doit être renommé cars_test_annos_withlabels.mat.
      • cars_annos.mat et cars_annos (2).mat ne sont pas nécessaires et il existe également des fichiers en double.
      • Vous pouvez également voir les instructions.
data
 └-stanford_cars
    |-cars_test_annos_withlabels.mat
    |-cars_test
    |  └-*.jpg
    |-cars_train
    |  └-*.jpg
    └-devkit
       |-cars_meta.mat
       |-cars_test_annos.mat
       |-cars_train_annos.mat
       |-eval_train.m
       |-README.txt
       └-train_perfect_preds.txt
Copier après la connexion
from torchvision.datasets import StanfordCars

train_data = StanfordCars(
    root="data"
)

train_data = StanfordCars(
    root="data",
    split="train",
    transform=None,
    target_transform=None,
    download=False
)

test_data = StanfordCars(
    root="data",
    split="test"
)

len(train_data), len(test_data)
# (8144, 8041)

train_data
# Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data

train_data.root
# 'data'

train_data._split
# 'train'

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method StanfordCars.download of Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data>

len(train_data.classes), train_data.classes
# (196,
#  ['AM General Hummer SUV 2000', 'Acura RL Sedan 2012', 'Acura TL Sedan 2012',
#   'Acura TL Type-S 2008', ..., 'Volvo 240 Sedan 1993',
#   'Volvo XC90 SUV 2007', 'smart fortwo Convertible 2012'])

train_data[0]
# (<PIL.Image.Image image mode=RGB size=600x400>, 13)

train_data[1]
# (<PIL.Image.Image image mode=RGB size=900x675>, 2)

train_data[2]
# (<PIL.Image.Image image mode=RGB size=640x480>, 90)

train_data[3]
# (<PIL.Image.Image image mode=RGB size=2100x1386>, 133)

train_data[4]
# (<PIL.Image.Image image mode=RGB size=144x108>, 105)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(12, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout()
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")

show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=train_data, ims=val_ims, main_title="val_data")
show_images(data=test_data, ims=test_ims, main_title="test_data")
Copier après la connexion

StanfordCars in PyTorch

StanfordCars in PyTorch

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal