Maison > développement back-end > Tutoriel Python > Comment exécuter Lama B Bbf avec GHS

Comment exécuter Lama B Bbf avec GHS

Patricia Arquette
Libérer: 2024-12-23 22:18:15
original
199 Les gens l'ont consulté

Les laboratoires Lambda disposent actuellement de GH200 à moitié prix pour habituer davantage de personnes aux outils ARM. Cela signifie que vous pouvez peut-être vous permettre d’exécuter les plus gros modèles open source ! Le seul bémol est que vous devrez occasionnellement créer quelque chose à partir des sources. Voici comment j'ai fait fonctionner le lama 405b avec une précision totale sur les GH200.

Créer des instances

Llama 405b fait environ 750 Go, vous avez donc besoin d'environ 10 GPU de 96 Go pour l'exécuter. (Le GH200 a une assez bonne vitesse d'échange de mémoire CPU-GPU - c'est un peu tout l'intérêt du GH200 - vous pouvez donc en utiliser aussi peu que 3. Le temps par jeton sera terrible, mais le débit total est acceptable, si vous effectuez un traitement par lots.) Connectez-vous aux laboratoires lambda et créez un groupe d'instances GH200. Assurez-vous de leur donner à tous le même système de fichiers réseau partagé.

How to run llama b bfwith ghs

Enregistrez les adresses IP dans ~/ips.txt.

Aides à la connexion SSH en masse

Je préfère le bash & ssh direct à tout ce qui est sophistiqué comme kubernetes ou slurm. C'est gérable avec quelques aides.

# skip fingerprint confirmation
for ip in $(cat ~/ips.txt); do
    echo "doing $ip"
    ssh-keyscan $ip >> ~/.ssh/known_hosts
done

function run_ip() {
    ssh -i ~/.ssh/lambda_id_ed25519 ubuntu@$ip -- stdbuf -oL -eL bash -l -c "$(printf "%q" "$*")" < /dev/null
}
function run_k() { ip=$(sed -n "$k"p ~/ips.txt) run_ip "$@"; }
function runhead() { ip="$(head -n1 ~/ips.txt)" run_ip "$@"; }

function run_ips() {
    for ip in $ips; do
        ip=$ip run_ip "$@" |& sed "s/^/$ip\t /" &
        # pids="$pids $!"
    done
    wait &> /dev/null
}
function runall() { ips="$(cat ~/ips.txt)" run_ips "$@"; }
function runrest() { ips="$(tail -n+2 ~/ips.txt)" run_ips "$@"; }

function ssh_k() {
    ip=$(sed -n "$k"p ~/ips.txt)
    ssh -i ~/.ssh/lambda_id_ed25519 ubuntu@$ip
}
alias ssh_head='k=1 ssh_k'

function killall() {
    pkill -ife '.ssh/lambda_id_ed25519'
    sleep 1
    pkill -ife -9 '.ssh/lambda_id_ed25519'
    while [[ -n "$(jobs -p)" ]]; do fg || true; done
}
Copier après la connexion
Copier après la connexion

Configurer le cache NFS

Nous mettrons l'environnement python et les poids du modèle dans le NFS. Il se chargera beaucoup plus rapidement si nous le mettons en cache.

# First, check the NFS works.
# runall ln -s my_other_fs_name shared
runhead 'echo world > shared/hello'
runall cat shared/hello

# Install and enable cachefilesd
runall sudo apt-get update
runall sudo apt-get install -y cachefilesd
runall "echo '
RUN=yes
CACHE_TAG=mycache
CACHE_BACKEND=Path=/var/cache/fscache
CACHEFS_RECLAIM=0
' | sudo tee -a /etc/default/cachefilesd"
runall sudo systemctl restart cachefilesd
runall 'sudo journalctl -u cachefilesd | tail -n2'

# Set the "fsc" option on the NFS mount
runhead cat /etc/fstab # should have mount to ~/shared
runall cp /etc/fstab etc-fstab-bak.txt
runall sudo sed -i 's/,proto=tcp,/,proto=tcp,fsc,/g' /etc/fstab
runall cat /etc/fstab

# Remount
runall sudo umount /home/ubuntu/wash2
runall sudo mount /home/ubuntu/wash2
runall cat /proc/fs/nfsfs/volumes # FSC column should say "yes"

# Test cache speedup
runhead dd if=/dev/urandom of=shared/bigfile bs=1M count=8192
runall dd if=shared/bigfile of=/dev/null bs=1M # First one takes 8 seconds
runall dd if=shared/bigfile of=/dev/null bs=1M # Seond takes 0.6 seconds
Copier après la connexion
Copier après la connexion

Créer un environnement conda

Au lieu d'exécuter soigneusement exactement les mêmes commandes sur chaque machine, nous pouvons utiliser un environnement conda dans le NFS et simplement le contrôler avec le nœud principal.

# We'll also use a shared script instead of changing ~/.profile directly.
# Easier to fix mistakes that way.
runhead 'echo ". /opt/miniconda/etc/profile.d/conda.sh" >> shared/common.sh'
runall 'echo "source /home/ubuntu/shared/common.sh" >> ~/.profile'
runall which conda

# Create the environment
runhead 'conda create --prefix ~/shared/311 -y python=3.11'
runhead '~/shared/311/bin/python --version' # double-check that it is executable
runhead 'echo "conda activate ~/shared/311" >> shared/common.sh'
runall which python
Copier après la connexion
Copier après la connexion

Installer les dépendances d'Aphrodite

Aphrodite est un fork de vllm qui démarre un peu plus rapidement et possède quelques fonctionnalités supplémentaires.
Il exécutera l'API d'inférence compatible openai et le modèle lui-même.

Vous avez besoin d'une torche, d'un triton et d'un flash-attention.
Vous pouvez obtenir des versions de torche aarch64 sur pytorch.org (vous ne voulez pas la construire vous-même).
Les deux autres, vous pouvez soit les construire vous-même, soit utiliser la roue que j'ai fabriquée.

Si vous construisez à partir des sources, vous pouvez gagner un peu de temps en exécutant python setup.py bdist_wheel pour triton, flash-attention et aphrodite en parallèle sur trois machines différentes. Ou vous pouvez les faire un par un sur la même machine.

runhead pip install 'numpy<2' torch==2.4.0 --index-url 'https://download.pytorch.org/whl/cu124'

# fix for "libstdc++.so.6: version `GLIBCXX_3.4.30' not found" error:
runhead conda install -y -c conda-forge libstdcxx-ng=12

runhead python -c 'import torch; print(torch.tensor(2).cuda() + 2, "torch ok")'
Copier après la connexion
Copier après la connexion

triton et attention flash des roues

runhead pip install 'https://github.com/qpwo/lambda-gh200-llama-405b-tutorial/releases/download/v0.1/triton-3.2.0+git755d4164-cp311-cp311-linux_aarch64.whl'
runhead pip install 'https://github.com/qpwo/lambda-gh200-llama-405b-tutorial/releases/download/v0.1/aphrodite_flash_attn-2.6.1.post2-cp311-cp311-linux_aarch64.whl'

Copier après la connexion
Copier après la connexion

triton de la source

k=1 ssh_k # ssh into first machine

pip install -U pip setuptools wheel ninja cmake setuptools_scm
git config --global feature.manyFiles true # faster clones
git clone https://github.com/triton-lang/triton.git ~/shared/triton
cd ~/shared/triton/python
git checkout 755d4164 # <-- optional, tested versions
# Note that ninja already parallelizes everything to the extent possible,
# so no sense trying to change the cmake flags or anything.
python setup.py bdist_wheel
pip install --no-deps dist/*.whl # good idea to download this too for later
python -c 'import triton; print("triton ok")'
Copier après la connexion
Copier après la connexion

attention flash de la source

k=2 ssh_k # go into second machine

git clone https://github.com/AlpinDale/flash-attention  ~/shared/flash-attention
cd ~/shared/flash-attention
python setup.py bdist_wheel
pip install --no-deps dist/*.whl
python -c 'import aphrodite_flash_attn; import aphrodite_flash_attn_2_cuda; print("flash attn ok")'
Copier après la connexion
Copier après la connexion

Installer Aphrodite

Vous pouvez utiliser ma roue ou la construire vous-même.

aphrodite de la roue

# skip fingerprint confirmation
for ip in $(cat ~/ips.txt); do
    echo "doing $ip"
    ssh-keyscan $ip >> ~/.ssh/known_hosts
done

function run_ip() {
    ssh -i ~/.ssh/lambda_id_ed25519 ubuntu@$ip -- stdbuf -oL -eL bash -l -c "$(printf "%q" "$*")" < /dev/null
}
function run_k() { ip=$(sed -n "$k"p ~/ips.txt) run_ip "$@"; }
function runhead() { ip="$(head -n1 ~/ips.txt)" run_ip "$@"; }

function run_ips() {
    for ip in $ips; do
        ip=$ip run_ip "$@" |& sed "s/^/$ip\t /" &
        # pids="$pids $!"
    done
    wait &> /dev/null
}
function runall() { ips="$(cat ~/ips.txt)" run_ips "$@"; }
function runrest() { ips="$(tail -n+2 ~/ips.txt)" run_ips "$@"; }

function ssh_k() {
    ip=$(sed -n "$k"p ~/ips.txt)
    ssh -i ~/.ssh/lambda_id_ed25519 ubuntu@$ip
}
alias ssh_head='k=1 ssh_k'

function killall() {
    pkill -ife '.ssh/lambda_id_ed25519'
    sleep 1
    pkill -ife -9 '.ssh/lambda_id_ed25519'
    while [[ -n "$(jobs -p)" ]]; do fg || true; done
}
Copier après la connexion
Copier après la connexion

aphrodite de la source

# First, check the NFS works.
# runall ln -s my_other_fs_name shared
runhead 'echo world > shared/hello'
runall cat shared/hello

# Install and enable cachefilesd
runall sudo apt-get update
runall sudo apt-get install -y cachefilesd
runall "echo '
RUN=yes
CACHE_TAG=mycache
CACHE_BACKEND=Path=/var/cache/fscache
CACHEFS_RECLAIM=0
' | sudo tee -a /etc/default/cachefilesd"
runall sudo systemctl restart cachefilesd
runall 'sudo journalctl -u cachefilesd | tail -n2'

# Set the "fsc" option on the NFS mount
runhead cat /etc/fstab # should have mount to ~/shared
runall cp /etc/fstab etc-fstab-bak.txt
runall sudo sed -i 's/,proto=tcp,/,proto=tcp,fsc,/g' /etc/fstab
runall cat /etc/fstab

# Remount
runall sudo umount /home/ubuntu/wash2
runall sudo mount /home/ubuntu/wash2
runall cat /proc/fs/nfsfs/volumes # FSC column should say "yes"

# Test cache speedup
runhead dd if=/dev/urandom of=shared/bigfile bs=1M count=8192
runall dd if=shared/bigfile of=/dev/null bs=1M # First one takes 8 seconds
runall dd if=shared/bigfile of=/dev/null bs=1M # Seond takes 0.6 seconds
Copier après la connexion
Copier après la connexion

Vérifiez que toutes les installations ont réussi

# We'll also use a shared script instead of changing ~/.profile directly.
# Easier to fix mistakes that way.
runhead 'echo ". /opt/miniconda/etc/profile.d/conda.sh" >> shared/common.sh'
runall 'echo "source /home/ubuntu/shared/common.sh" >> ~/.profile'
runall which conda

# Create the environment
runhead 'conda create --prefix ~/shared/311 -y python=3.11'
runhead '~/shared/311/bin/python --version' # double-check that it is executable
runhead 'echo "conda activate ~/shared/311" >> shared/common.sh'
runall which python
Copier après la connexion
Copier après la connexion

Téléchargez les poids

Allez sur https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct et assurez-vous que vous disposez des autorisations appropriées. L'approbation prend généralement environ une heure. Obtenez un jeton sur https://huggingface.co/settings/tokens

runhead pip install 'numpy<2' torch==2.4.0 --index-url 'https://download.pytorch.org/whl/cu124'

# fix for "libstdc++.so.6: version `GLIBCXX_3.4.30' not found" error:
runhead conda install -y -c conda-forge libstdcxx-ng=12

runhead python -c 'import torch; print(torch.tensor(2).cuda() + 2, "torch ok")'
Copier après la connexion
Copier après la connexion

courir lama 405b

Nous informerons les serveurs les uns des autres en démarrant Ray.

runhead pip install 'https://github.com/qpwo/lambda-gh200-llama-405b-tutorial/releases/download/v0.1/triton-3.2.0+git755d4164-cp311-cp311-linux_aarch64.whl'
runhead pip install 'https://github.com/qpwo/lambda-gh200-llama-405b-tutorial/releases/download/v0.1/aphrodite_flash_attn-2.6.1.post2-cp311-cp311-linux_aarch64.whl'

Copier après la connexion
Copier après la connexion

Nous pouvons démarrer aphrodite dans un seul onglet de terminal :

k=1 ssh_k # ssh into first machine

pip install -U pip setuptools wheel ninja cmake setuptools_scm
git config --global feature.manyFiles true # faster clones
git clone https://github.com/triton-lang/triton.git ~/shared/triton
cd ~/shared/triton/python
git checkout 755d4164 # <-- optional, tested versions
# Note that ninja already parallelizes everything to the extent possible,
# so no sense trying to change the cmake flags or anything.
python setup.py bdist_wheel
pip install --no-deps dist/*.whl # good idea to download this too for later
python -c 'import triton; print("triton ok")'
Copier après la connexion
Copier après la connexion

Et exécutez une requête depuis la machine locale dans un deuxième terminal :

k=2 ssh_k # go into second machine

git clone https://github.com/AlpinDale/flash-attention  ~/shared/flash-attention
cd ~/shared/flash-attention
python setup.py bdist_wheel
pip install --no-deps dist/*.whl
python -c 'import aphrodite_flash_attn; import aphrodite_flash_attn_2_cuda; print("flash attn ok")'
Copier après la connexion
Copier après la connexion
runhead pip install 'https://github.com/qpwo/lambda-gh200-llama-405b-tutorial/releases/download/v0.1/aphrodite_engine-0.6.4.post1-cp311-cp311-linux_aarch64.whl'
Copier après la connexion

Un bon rythme pour le texte, mais un peu lent pour le code. Si vous connectez 2 serveurs 8xH100 alors vous vous rapprochez de 16 tokens par seconde, mais cela coûte trois fois plus cher.

lectures complémentaires

  • Théoriquement, vous pouvez créer et détruire des instances avec l'API lambda labs https://cloud.lambdalabs.com/api/v1/docs
  • docs aphrodite https://aphrodite.pygmalion.chat/
  • docs vllm (l'API est essentiellement la même) https://docs.vllm.ai/en/latest/

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal