Maison > développement back-end > Tutoriel Python > Comment les tableaux NumPy peuvent-ils être efficacement justifiés (décalés) ?

Comment les tableaux NumPy peuvent-ils être efficacement justifiés (décalés) ?

DDD
Libérer: 2024-12-24 00:16:15
original
678 Les gens l'ont consulté

How Can NumPy Arrays Be Efficiently Justified (Shifted)?

Justification des tableaux NumPy

Problème :

L'optimisation du code pour déplacer le contenu dans une matrice est recherchée pour une utilisation dans une démo de jeu 2048. Plus précisément, des fonctions sont nécessaires pour déplacer les valeurs non nulles de la matrice vers la gauche, la droite, le haut ou le bas.

Solution utilisant NumPy :

Le code fourni propose une approche vectorisée inspirée de un autre article :

def justify(a, invalid_val=0, axis=1, side='left'):
    """
    Justifies a 2D array

    Parameters
    ----------
    A : ndarray
        Input array to be justified
    axis : int
        Axis along which justification is to be made
    side : str
        Direction of justification. It could be 'left', 'right', 'up', 'down'
        It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.

    """

    if invalid_val is np.nan:
        mask = ~np.isnan(a)
    else:
        mask = a!=invalid_val
    justified_mask = np.sort(mask,axis=axis)
    if (side=='up') | (side=='left'):
        justified_mask = np.flip(justified_mask,axis=axis)
    out = np.full(a.shape, invalid_val) 
    if axis==1:
        out[justified_mask] = a[mask]
    else:
        out.T[justified_mask.T] = a.T[mask.T]
    return out
Copier après la connexion

Exemples d'exécution :

In [473]: a # input array
Out[473]: 
array([[1, 0, 2, 0],
       [3, 0, 4, 0],
       [5, 0, 6, 0],
       [6, 7, 0, 8]])

In [474]: justify(a, axis=0, side='up')
Out[474]: 
array([[1, 7, 2, 8],
       [3, 0, 4, 0],
       [5, 0, 6, 0],
       [6, 0, 0, 0]])

In [475]: justify(a, axis=0, side='down')
Out[475]: 
array([[1, 0, 0, 0],
       [3, 0, 2, 0],
       [5, 0, 4, 0],
       [6, 7, 6, 8]])

In [476]: justify(a, axis=1, side='left')
Out[476]: 
array([[1, 2, 0, 0],
       [3, 4, 0, 0],
       [5, 6, 0, 0],
       [6, 7, 8, 0]])

In [477]: justify(a, axis=1, side='right')
Out[477]: 
array([[0, 0, 1, 2],
       [0, 0, 3, 4],
       [0, 0, 5, 6],
       [0, 6, 7, 8]])
Copier après la connexion

Cas générique (ndarray):

Pour un tableau générique à n dimensions, le code peut être modifié comme suit :

def justify_nd(a, invalid_val, axis, side):    
    """
    Justify ndarray for the valid elements (that are not invalid_val).

    Parameters
    ----------
    A : ndarray
        Input array to be justified
    invalid_val : scalar
        invalid value
    axis : int
        Axis along which justification is to be made
    side : str
        Direction of justification. Must be 'front' or 'end'.
        So, with 'front', valid elements are pushed to the front and
        with 'end' valid elements are pushed to the end along specified axis.
    """
    
    pushax = lambda a: np.moveaxis(a, axis, -1)
    if invalid_val is np.nan:
        mask = ~np.isnan(a)
    else:
        mask = a!=invalid_val
    justified_mask = np.sort(mask,axis=axis)
    
    if side=='front':
        justified_mask = np.flip(justified_mask,axis=axis)
            
    out = np.full(a.shape, invalid_val)
    if (axis==-1) or (axis==a.ndim-1):
        out[justified_mask] = a[mask]
    else:
        pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)]
    return out
Copier après la connexion

Exemples d'exécution (ndarray) :

In [87]: a
Out[87]: 
array([[[54, 57,  0, 77],
        [77,  0,  0, 31],
        [46,  0,  0, 98],
        [98, 22, 68, 75]],

       [[49,  0,  0, 98],
        [ 0, 47,  0, 87],
        [82, 19,  0, 90],
        [79, 89, 57, 74]],

       [[ 0,  0,  0,  0],
        [29,  0,  0, 49],
        [42, 75,  0, 67],
        [42, 41, 84, 33]],

       [[ 0,  0,  0, 38],
        [44, 10,  0,  0],
        [63,  0,  0,  0],
        [89, 14,  0,  0]]])
Copier après la connexion

Vers 'devant', le long de l'axe =0 :

In [88]: justify_nd(a, invalid_val=0, axis=0, side='front')
Out[88]: 
array([[[54, 57,  0, 77],
        [77, 47,  0, 31],
        [46, 19,  0, 98],
        [98, 22, 68, 75]],

       [[49,  0,  0, 98],
        [29, 10,  0, 87],
        [82, 75,  0, 90],
        [79, 89, 57, 74]],

       [[ 0,  0,  0, 38],
        [44,  0,  0, 49],
        [42,  0,  0, 67],
        [42, 41, 84, 33]],

       [[ 0,  0,  0,  0],
        [ 0,  0,  0,  0],
        [63,  0,  0,  0],
        [89, 14,  0,  0]]])
Copier après la connexion

Le long de l'axe=1 :

In [89]: justify_nd(a, invalid_val=0, axis=1, side='front')
Out[89]: 
array([[[54, 57, 68, 77],
        [77, 22,  0, 31],
        [46,  0,  0, 98],
        [98,  0,  0, 75]],

       [[49, 47, 57, 98],
        [82, 19,  0, 87],
        [79, 89,  0, 90],
        [ 0,  0,  0, 74]],

       [[29, 75, 84, 49],
        [42, 41,  0, 67],
        [42,  0,  0, 33],
        [ 0,  0,  0,  0]],

       [[44, 10,  0, 38],
        [63, 14,  0,  0],
        [89,  0,  0,  0],
        [ 0,  0,  0,  0]]])
Copier après la connexion

Le long de l'axe=2 :

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal