Faible qualité d'image après redimensionnement en Java
Dans un script de redimensionnement d'image qui réduit une image d'environ 300x300 à 60x60, la qualité d'image résultante n'est pas satisfaisant.
Une méthode pour améliorer la qualité consiste à employer la méthode « diviser pour mieux régner ». approche. Au lieu de redimensionner l'image en une seule étape, cette méthode la redimensionne progressivement par incréments de 50 % jusqu'à ce que la taille souhaitée soit atteinte. Ce processus de mise à l'échelle progressive permet de préserver la qualité.
Le code Java suivant illustre l'approche diviser pour régner pour redimensionner une image :
import java.awt.image.BufferedImage; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; public class DivideAndConquerImageResize { public static void main(String[] args) { try { // Read the original image BufferedImage original = ImageIO.read(new File("master.jpg")); // Scale the image in 50% increments BufferedImage scaled = original; while (scaled.getWidth() > 60 || scaled.getHeight() > 60) { scaled = getScaledInstanceToFit(scaled, new Dimension(scaled.getWidth() / 2, scaled.getHeight() / 2)); } // Write the scaled image to a file ImageIO.write(scaled, "jpg", new File("scaled.jpg")); } catch (IOException e) { e.printStackTrace(); } } public static BufferedImage getScaledInstanceToFit(BufferedImage img, Dimension size) { float scaleFactor = getScaleFactorToFit(img, size); return getScaledInstance(img, scaleFactor); } public static float getScaleFactorToFit(BufferedImage img, Dimension size) { float scale = 1f; if (img != null) { int imageWidth = img.getWidth(); int imageHeight = img.getHeight(); scale = getScaleFactorToFit(new Dimension(imageWidth, imageHeight), size); } return scale; } public static float getScaleFactorToFit(Dimension original, Dimension toFit) { float scale = 1f; if (original != null && toFit != null) { float dScaleWidth = getScaleFactor(original.width, toFit.width); float dScaleHeight = getScaleFactor(original.height, toFit.height); scale = Math.min(dScaleHeight, dScaleWidth); } return scale; } public static float getScaleFactor(int iMasterSize, int iTargetSize) { float scale = 1; if (iMasterSize > iTargetSize) { scale = (float) iTargetSize / (float) iMasterSize; } else { scale = (float) iTargetSize / (float) iMasterSize; } return scale; } public static BufferedImage getScaledInstance(BufferedImage img, double dScaleFactor) { BufferedImage imgBuffer = null; imgBuffer = getScaledInstance(img, dScaleFactor, RenderingHints.VALUE_INTERPOLATION_BILINEAR, true); return imgBuffer; } protected static BufferedImage getScaledInstance(BufferedImage img, double dScaleFactor, Object hint, boolean higherQuality) { int targetWidth = (int) Math.round(img.getWidth() * dScaleFactor); int targetHeight = (int) Math.round(img.getHeight() * dScaleFactor); int type = (img.getTransparency() == Transparency.OPAQUE) ? BufferedImage.TYPE_INT_RGB : BufferedImage.TYPE_INT_ARGB; BufferedImage ret = (BufferedImage) img; if (targetHeight > 0 || targetWidth > 0) { int w, h; if (higherQuality) { w = img.getWidth(); h = img.getHeight(); } else { w = targetWidth; h = targetHeight; } do { if (higherQuality && w > targetWidth) { w /= 2; if (w < targetWidth) { w = targetWidth; } } if (higherQuality && h > targetHeight) { h /= 2; if (h < targetHeight) { h = targetHeight; } } BufferedImage tmp = new BufferedImage(Math.max(w, 1), Math.max(h, 1), type); Graphics2D g2 = tmp.createGraphics(); g2.setRenderingHint(RenderingHints.KEY_INTERPOLATION, hint); g2.drawImage(ret, 0, 0, w, h, null); g2.dispose(); ret = tmp; } while (w != targetWidth || h != targetHeight); } else { ret = new BufferedImage(1, 1, type); } return ret; } }
En mettant progressivement l'image à l'échelle, cette méthode réduit efficacement l'impact des artefacts de compression et préserve la netteté de l’image.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!