


Comment puis-je analyser efficacement les prénoms, prénoms et noms de famille à partir d'un seul champ « nom complet » dans SQL, en gérant diverses incohérences de données et cas particuliers ?
Analyser le prénom, le deuxième prénom et le nom du champ Nom complet à l'aide de SQL
Lors du traitement des données, il est souvent nécessaire de séparer les noms en leur éléments constitutifs pour une manipulation plus facile. Dans ce cas, nous devons extraire le prénom, le deuxième prénom et le nom d'un champ « nom complet » tout en tenant compte des variations courantes des données.
Solution efficace avec une précision de 90 %
L'exemple fourni fournit une solution pratique qui traite la plupart des cas avec un haut degré de précision :
SELECT FIRST_NAME.ORIGINAL_INPUT_DATA, FIRST_NAME.TITLE, FIRST_NAME.FIRST_NAME, CASE WHEN 0 = CHARINDEX(' ', FIRST_NAME.REST_OF_NAME) THEN NULL -- No more spaces? Assume rest is last name ELSE SUBSTRING(FIRST_NAME.REST_OF_NAME, 1, CHARINDEX(' ', FIRST_NAME.REST_OF_NAME) - 1) END AS MIDDLE_NAME, SUBSTRING(FIRST_NAME.REST_OF_NAME, 1 + CHARINDEX(' ', FIRST_NAME.REST_OF_NAME), LEN(FIRST_NAME.REST_OF_NAME)) AS LAST_NAME FROM ( SELECT TITLE.TITLE, CASE WHEN 0 = CHARINDEX(' ', TITLE.REST_OF_NAME) THEN TITLE.REST_OF_NAME -- No space? Return the whole thing ELSE SUBSTRING(TITLE.REST_OF_NAME, 1, CHARINDEX(' ', TITLE.REST_OF_NAME) - 1) END AS FIRST_NAME, CASE WHEN 0 = CHARINDEX(' ', TITLE.REST_OF_NAME) THEN NULL -- No spaces at all? Then 1st name is all we have ELSE SUBSTRING(TITLE.REST_OF_NAME, CHARINDEX(' ', TITLE.REST_OF_NAME) + 1, LEN(TITLE.REST_OF_NAME)) END AS REST_OF_NAME, TITLE.ORIGINAL_INPUT_DATA FROM ( SELECT -- If the first three characters are in this list, -- then pull it as a "title". Otherwise return NULL for title. CASE WHEN SUBSTRING(TEST_DATA.FULL_NAME, 1, 3) IN ('MR ', 'MS ', 'DR ', 'MRS') THEN LTRIM(RTRIM(SUBSTRING(TEST_DATA.FULL_NAME, 1, 3))) ELSE NULL END AS TITLE, -- If you change the list, don't forget to change it here, too. CASE WHEN SUBSTRING(TEST_DATA.FULL_NAME, 1, 3) IN ('MR ', 'MS ', 'DR ', 'MRS') THEN LTRIM(RTRIM(SUBSTRING(TEST_DATA.FULL_NAME, 4, LEN(TEST_DATA.FULL_NAME)))) ELSE LTRIM(RTRIM(TEST_DATA.FULL_NAME)) END AS REST_OF_NAME, TEST_DATA.ORIGINAL_INPUT_DATA FROM ( SELECT -- Trim leading & trailing spaces before trying to process -- Disallow extra spaces *within* the name REPLACE(REPLACE(LTRIM(RTRIM(FULL_NAME)), ' ', ' '), ' ', ' ') AS FULL_NAME, FULL_NAME AS ORIGINAL_INPUT_DATA FROM ( -- Replace this block with your actual table SELECT 'GEORGE W BUSH' AS FULL_NAME UNION SELECT 'SUSAN B ANTHONY' AS FULL_NAME UNION SELECT 'ALEXANDER HAMILTON' AS FULL_NAME UNION SELECT 'OSAMA BIN LADEN JR' AS FULL_NAME UNION SELECT 'MARTIN J VAN BUREN SENIOR III' AS FULL_NAME UNION SELECT 'TOMMY' AS FULL_NAME UNION SELECT 'BILLY' AS FULL_NAME ) RAW_DATA ) TEST_DATA ) TITLE ) FIRST_NAME;
Cette requête identifie et supprime les préfixes tels que « MR », « MS », « DR » et « MRS » en tant que colonnes « TITRE » distinctes, gère les noms manquants, les espaces multiples dans le nom et un « nom complet » en une seule partie (prénom uniquement) .
Gestion des cas particuliers
La solution comprend également une modification qui répond à des cas particuliers spécifiques, comme un vide Champ « nom complet », des espaces de fin/de début, plusieurs espaces consécutifs et un « nom complet » contenant uniquement le prénom :
-- Handle the following special cases: -- 1 - The NAME field is NULL -- 2 - The NAME field contains leading / trailing spaces -- 3 - The NAME field has > 1 consecutive space within the name -- 4 - The NAME field contains ONLY the first name -- 5 - Include the original full name in the final output as a separate column, for readability -- 6 - Handle a specific list of prefixes as a separate "title" column SELECT FIRST_NAME.ORIGINAL_INPUT_DATA, FIRST_NAME.TITLE, FIRST_NAME.FIRST_NAME, CASE WHEN 0 = CHARINDEX(' ', FIRST_NAME.REST_OF_NAME) THEN NULL -- No more spaces? Assume rest is last name ELSE SUBSTRING(FIRST_NAME.REST_OF_NAME, 1, CHARINDEX(' ', FIRST_NAME.REST_OF_NAME) - 1) END AS MIDDLE_NAME, SUBSTRING(FIRST_NAME.REST_OF_NAME, 1 + CHARINDEX(' ', FIRST_NAME.REST_OF_NAME), LEN(FIRST_NAME.REST_OF_NAME)) AS LAST_NAME FROM ( SELECT TITLE.TITLE, CASE WHEN 0 = CHARINDEX(' ', TITLE.REST_OF_NAME) THEN TITLE.REST_OF_NAME -- No space? Return the whole thing ELSE SUBSTRING(TITLE.REST_OF_NAME, 1, CHARINDEX(' ', TITLE.REST_OF_NAME) - 1) END AS FIRST_NAME, CASE WHEN 0 = CHARINDEX(' ', TITLE.REST_OF_NAME) THEN NULL -- No spaces at all? Then 1st name is all we have ELSE SUBSTRING(TITLE.REST_OF_NAME, CHARINDEX(' ', TITLE.REST_OF_NAME) + 1, LEN(TITLE.REST_OF_NAME)) END AS REST_OF_NAME, TITLE.ORIGINAL_INPUT_DATA FROM ( SELECT -- If the first three characters are in this list, -- then pull it as a "title". Otherwise return NULL for title. CASE WHEN SUBSTRING(TEST_DATA.FULL_NAME, 1, 3) IN ('MR ', 'MS ', 'DR ', 'MRS') THEN LTRIM(RTRIM(SUBSTRING(TEST_DATA.FULL_NAME, 1, 3))) ELSE NULL END AS TITLE, -- If you change the list, don't forget to change it here, too. CASE WHEN SUBSTRING(TEST_DATA.FULL_NAME, 1, 3) IN ('MR ', 'MS ', 'DR ', 'MRS') THEN LTRIM(RTRIM(SUBSTRING(TEST_DATA.FULL_NAME, 4, LEN(TEST_DATA.FULL_NAME)))) ELSE LTRIM(RTRIM(TEST_DATA.FULL_NAME)) END AS REST_OF_NAME, TEST_DATA.ORIGINAL_INPUT_DATA FROM ( SELECT -- Trim leading & trailing spaces before trying to process -- Disallow extra spaces *within* the name REPLACE(REPLACE(LTRIM(RTRIM(FULL_NAME)), ' ', ' '), ' ', ' ') AS FULL_NAME, FULL_NAME AS ORIGINAL_INPUT_DATA FROM ( -- Replace this block with your actual table SELECT 'GEORGE W BUSH' AS FULL_NAME UNION SELECT 'SUSAN B ANTHONY' AS FULL_NAME UNION SELECT 'ALEXANDER HAMILTON' AS FULL_NAME UNION SELECT 'OSAMA BIN LADEN JR' AS FULL_NAME UNION SELECT 'MARTIN J VAN BUREN SENIOR III' AS FULL_NAME UNION SELECT 'TOMMY' AS FULL_NAME UNION SELECT 'BILLY' AS FULL_NAME UNION SELECT NULL AS FULL_NAME UNION SELECT ' ' AS FULL_NAME UNION SELECT ' JOHN JACOB SMITH' AS FULL_NAME UNION SELECT ' DR SANJAY GUPTA' AS FULL_NAME UNION SELECT 'DR JOHN S HOPKINS' AS FULL_NAME UNION SELECT ' MRS SUSAN ADAMS' AS FULL_NAME UNION SELECT ' MS AUGUSTA ADA KING ' AS FULL_NAME ) RAW_DATA ) TEST_DATA ) TITLE ) FIRST_NAME;
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Le rôle principal de MySQL dans les applications Web est de stocker et de gérer les données. 1.MySQL traite efficacement les informations utilisateur, les catalogues de produits, les enregistrements de transaction et autres données. 2. Grâce à SQL Query, les développeurs peuvent extraire des informations de la base de données pour générer du contenu dynamique. 3.MySQL fonctionne basé sur le modèle client-serveur pour assurer une vitesse de requête acceptable.

INNODB utilise des redologues et des undologs pour assurer la cohérence et la fiabilité des données. 1. REDOLOGIE RÉCLABLIER MODIFICATION DE PAGE DES DONNÉES Pour assurer la récupération des accidents et la persistance des transactions. 2.Undologs Enregistre la valeur des données d'origine et prend en charge le Rollback de la transaction et MVCC.

Par rapport à d'autres langages de programmation, MySQL est principalement utilisé pour stocker et gérer les données, tandis que d'autres langages tels que Python, Java et C sont utilisés pour le traitement logique et le développement d'applications. MySQL est connu pour ses performances élevées, son évolutivité et son support multiplateforme, adapté aux besoins de gestion des données, tandis que d'autres langues présentent des avantages dans leurs domaines respectifs tels que l'analyse des données, les applications d'entreprise et la programmation système.

La cardinalité de l'index MySQL a un impact significatif sur les performances de la requête: 1. L'indice de cardinalité élevé peut réduire plus efficacement la plage de données et améliorer l'efficacité de la requête; 2. L'indice de cardinalité faible peut entraîner une analyse complète de la table et réduire les performances de la requête; 3. Dans l'indice conjoint, des séquences de cardinalité élevées doivent être placées devant pour optimiser la requête.

Les opérations de base de MySQL incluent la création de bases de données, les tables et l'utilisation de SQL pour effectuer des opérations CRUD sur les données. 1. Créez une base de données: CreatedAtAbaseMy_First_DB; 2. Créez un tableau: CreateTableBooks (idIntauto_inCmentPrimaryKey, TitleVarchar (100) notnull, AuthorVarchar (100) notnull, publied_yearint); 3. Données d'insertion: INSERTINTOBOOKS (titre, auteur, publié_year) VA

MySQL convient aux applications Web et aux systèmes de gestion de contenu et est populaire pour son open source, ses performances élevées et sa facilité d'utilisation. 1) Par rapport à PostgreSQL, MySQL fonctionne mieux dans les requêtes simples et les opérations de lecture simultanées élevées. 2) Par rapport à Oracle, MySQL est plus populaire parmi les petites et moyennes entreprises en raison de son open source et de son faible coût. 3) Par rapport à Microsoft SQL Server, MySQL est plus adapté aux applications multiplateformes. 4) Contrairement à MongoDB, MySQL est plus adapté aux données structurées et au traitement des transactions.

InnodBBufferPool réduit les E / S de disque en mettant en cache des données et des pages d'indexation, améliorant les performances de la base de données. Son principe de travail comprend: 1. La lecture des données: lire les données de BufferPool; 2. Écriture de données: Après avoir modifié les données, écrivez dans BufferPool et actualisez-les régulièrement sur le disque; 3. Gestion du cache: utilisez l'algorithme LRU pour gérer les pages de cache; 4. Mécanisme de lecture: Chargez à l'avance des pages de données adjacentes. En dimensionner le tampon et en utilisant plusieurs instances, les performances de la base de données peuvent être optimisées.

MySQL gère efficacement les données structurées par la structure de la table et la requête SQL, et met en œuvre des relations inter-tableaux à travers des clés étrangères. 1. Définissez le format de données et tapez lors de la création d'une table. 2. Utilisez des clés étrangères pour établir des relations entre les tables. 3. Améliorer les performances par l'indexation et l'optimisation des requêtes. 4. Bases de données régulièrement sauvegarde et surveillent régulièrement la sécurité des données et l'optimisation des performances.
