Maison développement back-end Tutoriel Python Comment puis-je diviser efficacement un grand DataFrame en DataFrames individuels par ID de participant ?

Comment puis-je diviser efficacement un grand DataFrame en DataFrames individuels par ID de participant ?

Dec 30, 2024 am 10:25 AM

How Can I Efficiently Split a Large DataFrame into Individual DataFrames by Participant ID?

Diviser un DataFrame massif en DataFrames individuels par ID de participant

Considérez un scénario dans lequel vous possédez un DataFrame colossal contenant les données d'une expérience impliquant 60 participants. Votre objectif est de diviser ce volumineux DataFrame en 60 DataFrames distincts, chacun représentant un participant individuel. Une variable essentielle, « nom », identifie de manière unique chaque participant au sein du DataFrame.

Une tentative d'accomplir cette tâche à l'aide d'une fonction personnalisée, « splitframe », s'est avérée infructueuse, ce qui soulève la question d'une solution plus efficace.

Une approche supérieure : découpage de trames de données

Une stratégie alternative consiste à utiliser des techniques de découpage pour séparer le DataFrame. Voici comment :

  1. Générez une liste distinctive de noms de participants (« UniqueNames ») à l'aide de la colonne « Noms » du DataFrame.
  2. Établissez un dictionnaire pour accueillir les DataFrames individuels, en utilisant la liste 'UniqueNames' comme clés.
  3. Parcourez chaque nom de participant et attribuez les données correspondantes à un DataFrame dans le dictionnaire.

Cette approche, utilisant le découpage, fournit une méthode plus simple et plus efficace pour créer des DataFrames individuels pour chaque participant :

# Create a DataFrame with a 'Names' column
data = pd.DataFrame({
    'Names': ['Joe', 'John', 'Jasper', 'Jez'] * 4,
    'Ob1': np.random.rand(16),
    'Ob2': np.random.rand(16)
})

# Extract unique participant names
UniqueNames = data['Names'].unique()

# Initialize a dictionary to store individual DataFrames
DataFrameDict = {elem: pd.DataFrame() for elem in UniqueNames}

# Populate the dictionary with individual DataFrames
for key in DataFrameDict.keys():
    DataFrameDict[key] = data[data['Names'] == key]
Copier après la connexion

Accès aux DataFrames individuels

Pour accéder à un DataFrame spécifique pour un participant particulier, utilisez simplement la clé du dictionnaire correspondant au participant nom, comme démontré ci-dessous :

DataFrameDict['Joe']
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Mar 05, 2025 am 09:58 AM

Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte

Comment télécharger des fichiers dans Python Comment télécharger des fichiers dans Python Mar 01, 2025 am 10:03 AM

Comment télécharger des fichiers dans Python

Filtrage d'image en python Filtrage d'image en python Mar 03, 2025 am 09:44 AM

Filtrage d'image en python

Comment utiliser la belle soupe pour analyser HTML? Comment utiliser la belle soupe pour analyser HTML? Mar 10, 2025 pm 06:54 PM

Comment utiliser la belle soupe pour analyser HTML?

Comment travailler avec des documents PDF à l'aide de Python Comment travailler avec des documents PDF à l'aide de Python Mar 02, 2025 am 09:54 AM

Comment travailler avec des documents PDF à l'aide de Python

Comment se cacher en utilisant Redis dans les applications Django Comment se cacher en utilisant Redis dans les applications Django Mar 02, 2025 am 10:10 AM

Comment se cacher en utilisant Redis dans les applications Django

Présentation de la boîte à outils en langage naturel (NLTK) Présentation de la boîte à outils en langage naturel (NLTK) Mar 01, 2025 am 10:05 AM

Présentation de la boîte à outils en langage naturel (NLTK)

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Mar 10, 2025 pm 06:52 PM

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?

See all articles