


Projet Python pour débutant : créer une application de dessin en réalité augmentée à l'aide d'OpenCV et Mediapipe
Dans ce projet Python, nous allons créer une simple application de dessin AR. Grâce à votre webcam et aux gestes de vos mains, vous pouvez dessiner virtuellement sur l'écran, personnaliser votre pinceau et même enregistrer vos créations !
Installation
Pour commencer, créez un nouveau dossier et initialisez un nouvel environnement virtuel en utilisant :
python -m venv venv
./venv/Scripts/activate
Ensuite, installez les bibliothèques requises à l'aide de pip ou du programme d'installation de votre choix :
pip install mediapipe
pip install opencv-python
Remarque
Vous pourriez avoir des difficultés à installer Mediapipe avec la dernière version sur Python. Au moment où j'écris ce blog, j'utilise python 3.11.2. Assurez-vous d'utiliser la version compatible sur python.
Étape 1 : Capturer le flux de la webcam
La première étape consiste à configurer votre webcam et à afficher le flux vidéo. Nous utiliserons VideoCapture d'OpenCV pour accéder à la caméra et afficher les images en continu.
import cv2 # The argument '0' specifies the default camera (usually the built-in webcam). cap = cv2.VideoCapture(0) # Start an infinite loop to continuously capture video frames from the webcam while True: # Read a single frame from the webcam # `ret` is a boolean indicating success; `frame` is the captured frame. ret, frame = cap.read() # Check if the frame was successfully captured # If not, break the loop and stop the video capture process. if not ret: break # Flip the frame horizontally (like a mirror image) frame = cv2.flip(frame, 1) # Display the current frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) # Wait for a key press for 1 millisecond # If the 'q' key is pressed, break the loop to stop the video feed. if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam resource to make it available for other programs cap.release() # Close all OpenCV-created windows cv2.destroyAllWindows()
Le saviez-vous ?
Lors de l'utilisation de cv2.waitKey() dans OpenCV, le code clé renvoyé peut inclure des bits supplémentaires en fonction de la plate-forme. Pour vous assurer de détecter correctement les pressions sur les touches, vous pouvez masquer le résultat avec 0xFF pour isoler les 8 bits inférieurs (la valeur ASCII réelle). Sans cela, vos comparaisons clés pourraient échouer sur certains systèmes. Utilisez donc toujours & 0xFF pour un comportement cohérent !
Étape 2 : Intégrer la détection des mains
Grâce à la solution Hands de Mediapipe, nous détecterons la main et extrairons la position des repères clés comme l'index et le majeur.
import cv2 import mediapipe as mp # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands # Load the hand-tracking solution from MediaPipe hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # Flip the frame horizontally to create a mirror effect frame = cv2.flip(frame, 1) # Convert the frame from BGR (OpenCV default) to RGB (MediaPipe requirement) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Process the RGB frame to detect and track hands result = hands.process(frame_rgb) # If hands are detected in the frame if result.multi_hand_landmarks: # Iterate through all detected hands for hand_landmarks in result.multi_hand_landmarks: # Get the frame dimensions (height and width) h, w, _ = frame.shape # Calculate the pixel coordinates of the tip of the index finger cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Calculate the pixel coordinates of the tip of the middle finger mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Draw a circle at the index finger tip on the original frame cv2.circle(frame, (cx, cy), 10, (0, 255, 0), -1) # Green circle with radius 10 # Display the processed frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Exit the loop if 'q' is pressed # Release the webcam resources for other programs cap.release() cv2.destroyAllWindows()
Étape 3 : Suivez la position du doigt et dessinez
Nous suivrons l'index et autoriserons le dessin uniquement lorsque l'index et le majeur sont séparés par une distance seuil.
Nous maintiendrons une liste de coordonnées des index à dessiner sur le cadre d'origine et chaque fois que le majeur sera suffisamment proche, nous ajouterons Aucun à ce tableau de coordonnées indiquant une casse.
import cv2 import mediapipe as mp import math # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) # Variables to store drawing points and reset state draw_points = [] # A list to store points where lines should be drawn reset_drawing = False # Flag to indicate when the drawing should reset # Brush settings brush_color = (0, 0, 255) brush_size = 5 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break frame = cv2.flip(frame, 1) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) result = hands.process(frame_rgb) # If hands are detected if result.multi_hand_landmarks: for hand_landmarks in result.multi_hand_landmarks: h, w, _ = frame.shape # Get the frame dimensions (height and width) # Get the coordinates of the index finger tip cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Get the coordinates of the middle finger tip mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Calculate the distance between the index and middle finger tips distance = math.sqrt((mx - cx) ** 2 + (my - cy) ** 2) # Threshold distance to determine if the fingers are close (used to reset drawing) threshold = 40 # If the fingers are far apart if distance > threshold: if reset_drawing: # Check if the drawing was previously reset draw_points.append(None) # None means no line reset_drawing = False draw_points.append((cx, cy)) # Add the current point to the list for drawing else: # If the fingers are close together set the flag to reset drawing reset_drawing = True # # Draw the lines between points in the `draw_points` list for i in range(1, len(draw_points)): if draw_points[i - 1] and draw_points[i]: # Only draw if both points are valid cv2.line(frame, draw_points[i - 1], draw_points[i], brush_color, brush_size) cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam and close all OpenCV windows cap.release() cv2.destroyAllWindows()
Étape 4 : améliorations
- Utilisez OpenCV rectangle() et putText() pour les boutons permettant de basculer la taille et la couleur du pinceau.
- Ajoutez une option pour enregistrer le cadre.
- Ajoutez un outil gomme, utilisez les nouvelles coordonnées pour modifier le tableau draw_points.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.
