


Pourquoi la conversion directe de tranches dans Go réutilise-t-elle la même adresse mémoire pour les pointeurs ?
Go Slices et réutilisation de la mémoire
Un problème curieux est survenu dans un projet impliquant des pointeurs Go. Le problème était que lors de la conversion d'une tranche d'objets struct en une tranche d'interfaces, l'adresse mémoire du premier pointeur était utilisée à plusieurs reprises dans la sortie.
Pour résoudre ce problème, le développeur a modifié la fonction de conversion pour utiliser un extra variable, qui a donné le résultat attendu.
Cela soulève la question : pourquoi la solution originale a-t-elle échoué ? Pour comprendre cela, nous devons examiner comment Go gère les pointeurs et les tranches.
Dans Go, l'expression *coll renvoie un en-tête de tranche contenant des informations sur le tableau sous-jacent, sa longueur et sa capacité. Lors de l'accès à un élément d'une tranche, l'expression (*coll)[idx] est utilisée, qui renvoie une référence à l'élément à l'index idx.
Dans la solution originale, item était la variable de boucle dans la plage *boucle de collage. Cette boucle parcourt l'en-tête de la tranche, attribuant chaque élément de la tranche à l'élément variable de boucle. Cependant, puisque item est la variable de la boucle, son adresse mémoire reste la même tout au long de la boucle. Par conséquent, lorsque &item est ajouté à la tranche de sortie, la même adresse mémoire est ajoutée plusieurs fois, ce qui entraîne le comportement observé.
La solution révisée utilise l'expression i := (*coll)[idx] dans le boucle pour affecter l’élément à l’index idx à une variable locale i. Cette variable a une adresse mémoire distincte de l'élément de variable de boucle, et ainsi, lorsque &i est ajouté à la tranche de sortie, chaque élément a une adresse mémoire différente.
Pour illustrer la différence d'adresses mémoire entre la variable de boucle et l'élément auquel vous accédez, considérez le code suivant :
package main import "fmt" func main() { coll := []int{5, 10, 15} for i, v := range coll { fmt.Printf("This one is always the same; %v\n", &v) fmt.Println("This one is 4 bytes larger each iteration; %v\n", &coll[i]) } }
L'exécution de ce code démontrera que &v a la même adresse mémoire pour toutes les itérations de la boucle, tandis que &coll[i] a une mémoire différente adresse pour chaque itération.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

OpenSSL, en tant que bibliothèque open source largement utilisée dans les communications sécurisées, fournit des algorithmes de chiffrement, des clés et des fonctions de gestion des certificats. Cependant, il existe des vulnérabilités de sécurité connues dans sa version historique, dont certaines sont extrêmement nocives. Cet article se concentrera sur les vulnérabilités et les mesures de réponse communes pour OpenSSL dans Debian Systems. DebianopenSSL CONNUTS Vulnérabilités: OpenSSL a connu plusieurs vulnérabilités graves, telles que: la vulnérabilité des saignements cardiaques (CVE-2014-0160): cette vulnérabilité affecte OpenSSL 1.0.1 à 1.0.1F et 1.0.2 à 1.0.2 Versions bêta. Un attaquant peut utiliser cette vulnérabilité à des informations sensibles en lecture non autorisées sur le serveur, y compris les clés de chiffrement, etc.

Dans le cadre du cadre de beegoorm, comment spécifier la base de données associée au modèle? De nombreux projets Beego nécessitent que plusieurs bases de données soient opérées simultanément. Lorsque vous utilisez Beego ...

Chemin d'apprentissage du backend: le parcours d'exploration du front-end à l'arrière-end en tant que débutant back-end qui se transforme du développement frontal, vous avez déjà la base de Nodejs, ...

Le problème de l'utilisation de Redessstream pour implémenter les files d'attente de messages dans le langage GO consiste à utiliser le langage GO et redis ...

Que dois-je faire si les étiquettes de structure personnalisées à Goland ne sont pas affichées? Lorsque vous utilisez Goland pour le développement du langage GO, de nombreux développeurs rencontreront des balises de structure personnalisées ...

La bibliothèque utilisée pour le fonctionnement du numéro de point flottante dans le langage go présente comment s'assurer que la précision est ...

Problème de threading de file d'attente dans Go Crawler Colly explore le problème de l'utilisation de la bibliothèque Crawler Crawler dans le langage Go, les développeurs rencontrent souvent des problèmes avec les threads et les files d'attente de demande. � ...

Cet article présente comment configurer MongoDB sur Debian System pour réaliser une expansion automatique. Les étapes principales incluent la configuration de l'ensemble de répliques MongoDB et de la surveillance de l'espace disque. 1. Installation de MongoDB Tout d'abord, assurez-vous que MongoDB est installé sur le système Debian. Installez à l'aide de la commande suivante: SudoaptupDaSudoaptInstall-myongoDB-Org 2. Configuration de la réplique MongoDB Ensemble de répliques MongoDB assure la haute disponibilité et la redondance des données, ce qui est la base de la réalisation d'une expansion de capacité automatique. Démarrer le service MongoDB: Sudosystemctlstartmongodsudosys
