mul dans PyTorch

Patricia Arquette
Libérer: 2025-01-02 21:48:39
original
320 Les gens l'ont consulté

mul in PyTorch

Achetez-moi un café☕

*Mémos :

  • Mon message explique add().
  • Mon message explique sub().
  • Mon message explique div().
  • Mon message explique le reste().
  • Mon message explique fmod().

mul() peut effectuer une multiplication avec deux des tenseurs 0D ou plus D de zéro ou plusieurs éléments ou scalaires ou le tenseur 0D ou plus D de zéro ou plusieurs éléments et un scalaire. obtenir le tenseur 0D ou plus D de zéro ou plusieurs éléments comme indiqué ci-dessous :

*Mémos :

  • mul() peut être utilisé avec une torche ou un tenseur.
  • Le 1er argument (entrée) avec torch (Type : tenseur ou scalaire de int, float, complexe ou bool) ou en utilisant un tenseur (Type : tenseur de int, float, complexe ou bool)(Obligatoire).
  • Le 2ème argument avec torch ou le 1er argument avec un tenseur est autre (Required-Type : tenseur ou scalaire de int, float, complexe ou bool).
  • Il y a un argument avec torch(Optional-Default:None-Type:tensor) : *Mémos :
    • out= doit être utilisé.
    • Mon message explique notre argument.
  • multiplier() est l'alias de mul().
import torch

tensor1 = torch.tensor([9, 7, 6])
tensor2 = torch.tensor([[4, -4, 3], [-2, 5, -5]])

torch.mul(input=tensor1, other=tensor2)
tensor1.mul(other=tensor2)
# tensor([[36, -28, 18], [-18, 35, -30]])

torch.mul(input=9, other=tensor2)
# tensor([[36, -36, 27], [-18, 45, -45]])

torch.mul(input=tensor1, other=4)
# tensor([36, 28, 24])

torch.mul(input=9, other=4)
# tensor(36)

tensor1 = torch.tensor([9., 7., 6.])
tensor2 = torch.tensor([[4., -4., 3.], [-2., 5., -5.]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[36., -28., 18.], [-18., 35., -30.]])

torch.mul(input=9., other=tensor2)
# tensor([[36., -36., 27.], [-18., 45., -45.]])

torch.mul(input=tensor1, other=4.)
# tensor([36., 28., 24.])

torch.mul(input=9., other=4.)
# tensor(36.)

tensor1 = torch.tensor([9.+0.j, 7.+0.j, 6.+0.j])
tensor2 = torch.tensor([[4.+0.j, -4.+0.j, 3.+0.j],
                        [-2.+0.j, 5.+0.j, -5.+0.j]])
torch.mul(input=tensor1, other=tensor2)
# tensor([[36.+0.j, -28.+0.j, 18.+0.j],
#         [-18.+0.j, 35.+0.j, -30.+0.j]])

torch.mul(input=9.+0.j, other=tensor2)
# tensor([[36.+0.j, -36.+0.j, 27.+0.j],
#         [-18.+0.j, 45.+0.j, -45.+0.j]])

torch.mul(input=tensor1, other=4.+0.j)
# tensor([36.+0.j, 28.+0.j, 24.+0.j])

torch.mul(input=9.+0.j, other=4.+0.j)
# tensor(36.+0.j)

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, False, True]])

torch.mul(input=True, other=tensor2)
# tensor([[False, True, False], [True, False, True]])

torch.mul(input=tensor1, other=False)
# tensor([False, False, False])

torch.mul(input=True, other=False)
# tensor(False)
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal