Maison développement back-end Tutoriel Python De puissantes bibliothèques Python pour créer des microservices robustes

De puissantes bibliothèques Python pour créer des microservices robustes

Jan 05, 2025 am 10:07 AM

owerful Python Libraries for Building Robust Microservices

En tant qu'auteur à succès, je vous invite à explorer mes livres sur Amazon. N'oubliez pas de me suivre sur Medium et de montrer votre soutien. Merci! Votre soutien compte pour le monde !

Python est devenu un langage incontournable pour la création de microservices en raison de sa simplicité, de sa flexibilité et de son écosystème robuste. Dans cet article, j'explorerai cinq bibliothèques Python puissantes qui peuvent vous aider à créer des architectures de microservices robustes et évolutives.

Flask est un micro-framework populaire, parfait pour créer des microservices légers. Sa simplicité et son extensibilité en font un excellent choix pour les développeurs qui souhaitent créer rapidement de petits services ciblés. Le noyau de Flask est intentionnellement simple, mais il peut être étendu avec divers plugins pour ajouter des fonctionnalités selon les besoins.

Voici un exemple de base de microservice Flask :

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)
Copier après la connexion
Copier après la connexion
Copier après la connexion

Ce service simple expose un seul point de terminaison qui renvoie une réponse JSON. La simplicité de Flask permet aux développeurs de se concentrer sur la logique métier plutôt que sur le code passe-partout.

Pour les microservices plus complexes, FastAPI est un excellent choix. Il est conçu pour un développement d'API facile et hautes performances, avec une prise en charge intégrée de la programmation asynchrone et de la documentation automatique de l'API.

Voici un exemple de microservice FastAPI :

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}
Copier après la connexion
Copier après la connexion
Copier après la connexion

L'utilisation par FastAPI d'indices de type permet une validation automatique des requêtes et la génération de la documentation de l'API. Cela peut considérablement accélérer le développement et réduire le risque de bugs.

Nameko est une autre bibliothèque puissante pour créer des microservices en Python. Il fournit un cadre simple et flexible pour créer, tester et exécuter des services. Nameko prend en charge plusieurs méthodes de transport et de sérialisation, ce qui le rend polyvalent pour différents cas d'utilisation.

Voici un service Nameko de base :

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"
Copier après la connexion
Copier après la connexion
Copier après la connexion

Le système d'injection de dépendances de Nameko facilite l'ajout de nouvelles fonctionnalités à vos services sans modifier le code existant. Cela favorise un couplage lâche et rend les services plus faciles à maintenir et à faire évoluer.

Pour une communication interservices efficace, gRPC est un excellent choix. Il utilise des tampons de protocole pour la sérialisation, ce qui entraîne des charges utiles plus petites et une communication plus rapide par rapport aux API REST traditionnelles.

Voici un exemple de définition de service gRPC :

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}
Copier après la connexion
Copier après la connexion
Copier après la connexion

Et voici comment vous pouvez implémenter ce service en Python :

import grpc
from concurrent import futures
import greeting_pb2
import greeting_pb2_grpc

class Greeter(greeting_pb2_grpc.GreeterServicer):
    def SayHello(self, request, context):
        return greeting_pb2.HelloReply(message=f"Hello, {request.name}!")

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    greeting_pb2_grpc.add_GreeterServicer_to_server(Greeter(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

if __name__ == '__main__':
    serve()
Copier après la connexion
Copier après la connexion

Les puissantes fonctionnalités de saisie et de génération de code de gRPC peuvent aider à détecter les erreurs plus tôt et à améliorer la fiabilité globale du système.

À mesure que les architectures de microservices se développent, la découverte des services et la gestion de la configuration deviennent cruciales. Consul est un outil puissant qui peut vous aider à gérer ces aspects de votre système. Bien qu'il ne s'agisse pas d'une bibliothèque Python en soi, elle s'intègre bien aux services Python.

Voici un exemple d'enregistrement d'un service auprès de Consul en utilisant Python :

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)
Copier après la connexion
Copier après la connexion
Copier après la connexion

Le magasin de valeurs-clés de Consul peut également être utilisé pour la gestion centralisée de la configuration, ce qui facilite la gestion des paramètres sur plusieurs services.

Dans les systèmes distribués, les pannes sont inévitables. Hystrix est une bibliothèque qui permet de mettre en œuvre la tolérance aux pannes et la tolérance à la latence dans les architectures de microservices. Bien qu'ils soient initialement développés pour Java, des ports Python sont disponibles.

Voici un exemple d'utilisation d'un port Python d'Hystrix :

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}
Copier après la connexion
Copier après la connexion
Copier après la connexion

Cette commande tentera d'obtenir les données utilisateur, mais si elle échoue (en raison de problèmes de réseau, par exemple), elle renverra une réponse de secours au lieu de générer une erreur.

Lors de la conception de microservices, il est important de prendre en compte la cohérence des données, en particulier lorsqu'il s'agit de transactions distribuées. Une approche consiste à utiliser le modèle Saga, où une séquence de transactions locales met à jour chaque service et publie un événement pour déclencher la prochaine transaction locale.

Voici un exemple simplifié de la façon dont vous pourriez implémenter une Saga en Python :

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"
Copier après la connexion
Copier après la connexion
Copier après la connexion

Cette Saga exécute une série d'étapes pour traiter une commande. Si une étape échoue, elle déclenche un processus de compensation pour annuler les étapes précédentes.

L'authentification est un autre aspect crucial de l'architecture des microservices. Les jetons Web JSON (JWT) sont un choix populaire pour implémenter l'authentification sans état entre les services. Voici un exemple de la façon dont vous pouvez implémenter l'authentification JWT dans un microservice Flask :

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}
Copier après la connexion
Copier après la connexion
Copier après la connexion

Cet exemple montre comment créer et valider des JWT pour authentifier les demandes entre services.

La surveillance est essentielle pour maintenir la santé et les performances d'une architecture de microservices. Prometheus est un système de surveillance open source populaire qui s'intègre bien aux services Python. Voici un exemple de la façon dont vous pouvez ajouter la surveillance Prometheus à une application Flask :

import grpc
from concurrent import futures
import greeting_pb2
import greeting_pb2_grpc

class Greeter(greeting_pb2_grpc.GreeterServicer):
    def SayHello(self, request, context):
        return greeting_pb2.HelloReply(message=f"Hello, {request.name}!")

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    greeting_pb2_grpc.add_GreeterServicer_to_server(Greeter(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

if __name__ == '__main__':
    serve()
Copier après la connexion
Copier après la connexion

Ce code définit des métriques de base pour votre application Flask, que Prometheus peut ensuite extraire et analyser.

Dans les applications du monde réel, les architectures de microservices peuvent devenir assez complexes. Prenons l'exemple d'une plateforme de commerce électronique. Vous pouvez disposer de services distincts pour la gestion des utilisateurs, le catalogue de produits, le traitement des commandes, la gestion des stocks et le traitement des paiements.

Le service de gestion des utilisateurs peut être implémenté à l'aide de Flask et JWT pour l'authentification :

import consul

c = consul.Consul()

c.agent.service.register(
    "web",
    service_id="web-1",
    address="10.0.0.1",
    port=8080,
    tags=["rails"],
    check=consul.Check.http('http://10.0.0.1:8080', '10s')
)
Copier après la connexion

Le service de catalogue de produits peut utiliser FastAPI pour des performances élevées :

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)
Copier après la connexion
Copier après la connexion
Copier après la connexion

Le service de traitement des commandes peut utiliser Nameko et implémenter le modèle Saga pour gérer les transactions distribuées :

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}
Copier après la connexion
Copier après la connexion
Copier après la connexion

Le service de gestion des stocks peut utiliser gRPC pour une communication efficace avec d'autres services :

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"
Copier après la connexion
Copier après la connexion
Copier après la connexion

Enfin, le service de traitement des paiements peut utiliser Hystrix pour la tolérance aux pannes :

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}
Copier après la connexion
Copier après la connexion
Copier après la connexion

Ces services travailleraient ensemble pour gérer les différents aspects de la plateforme de commerce électronique. Ils communiqueraient entre eux à l'aide d'une combinaison d'API REST, d'appels gRPC et de files d'attente de messages, en fonction des exigences spécifiques de chaque interaction.

En conclusion, Python offre un riche écosystème de bibliothèques et d'outils pour créer des microservices robustes. En tirant parti de ces bibliothèques et en suivant les meilleures pratiques en matière de conception de microservices, les développeurs peuvent créer des systèmes évolutifs, résilients et maintenables. La clé est de choisir les bons outils pour chaque cas d’utilisation spécifique et de concevoir des services faiblement couplés mais hautement cohérents. Avec une planification et une mise en œuvre minutieuses, les microservices Python peuvent constituer l’épine dorsale de systèmes complexes et performants dans divers secteurs.


101 livres

101 Books est une société d'édition basée sur l'IA cofondée par l'auteur Aarav Joshi. En tirant parti de la technologie avancée de l'IA, nous maintenons nos coûts de publication incroyablement bas (certains livres coûtent aussi peu que 4 $), ce qui rend des connaissances de qualité accessibles à tous.

Découvrez notre livre Golang Clean Code disponible sur Amazon.

Restez à l'écoute des mises à jour et des nouvelles passionnantes. Lorsque vous achetez des livres, recherchez Aarav Joshi pour trouver plus de nos titres. Utilisez le lien fourni pour profiter de réductions spéciales !

Nos créations

N'oubliez pas de consulter nos créations :

Centre des investisseurs | Centre des investisseurs espagnol | Investisseur central allemand | Vie intelligente | Époques & Échos | Mystères déroutants | Hindutva | Développeur Élite | Écoles JS


Nous sommes sur Medium

Tech Koala Insights | Epoques & Echos Monde | Support Central des Investisseurs | Mystères déroutants Medium | Sciences & Epoques Medium | Hindutva moderne

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1676
14
Tutoriel PHP
1278
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles