Maison développement back-end Tutoriel Python Script Python pour l'analyse du sentiment boursier

Script Python pour l'analyse du sentiment boursier

Jan 05, 2025 pm 06:04 PM

"La bourse est remplie d'individus qui connaissent le prix de tout, mais la valeur de rien." -Philip Fisher

Python gagne considérablement en popularité et est utilisé dans un large éventail d'applications, depuis les calculs de base jusqu'à l'analyse statistique avancée des données boursières. Dans cet article, nous examinerons un script Python qui illustre la domination croissante de Python dans le monde financier. Sa capacité à s'intégrer de manière transparente aux données, à effectuer des calculs complexes et à automatiser des tâches en fait un outil inestimable pour les professionnels de la finance.

Ce script montre comment Python peut être utilisé pour analyser les gros titres de l'actualité et extraire des informations précieuses sur le sentiment du marché. En tirant parti de la puissance des bibliothèques de traitement du langage naturel (NLP), le script analyse le ton émotionnel des articles d'actualité liés à un titre spécifique. Cette analyse peut fournir des informations cruciales aux investisseurs, les aidant à :

  • Prenez des décisions d'investissement plus éclairées : en comprenant le sentiment dominant du marché, les investisseurs peuvent identifier les opportunités potentielles et atténuer les risques.
  • Développer des stratégies de trading plus efficaces : l'analyse des sentiments peut être intégrée aux algorithmes de trading pour améliorer le timing et potentiellement améliorer les rendements.
  • Gagnez un avantage concurrentiel : la polyvalence de Python permet le développement de modèles financiers sophistiqués et l'analyse de vastes ensembles de données, offrant ainsi un avantage significatif dans le paysage financier concurrentiel.
import requests
import pandas as pd
from nltk.sentiment.vader import SentimentIntensityAnalyzer

# THIS NEEDS TO BE INSTALLED
# ---------------------------
# import nltk
# nltk.download('vader_lexicon')

# Function to fetch news headlines from a free API
def get_news_headlines(ticker):
    """
    Fetches news headlines related to the given stock ticker from a free API.

    Args:
        ticker: Stock ticker symbol (e.g., 'AAPL', 'GOOG').

    Returns:
        A list of news headlines as strings.
    """

    # We are using the below free api from this website https://eodhd.com/financial-apis/stock-market-financial-news-api
    url = f'https://eodhd.com/api/news?s={ticker}.US&offset=0&limit=10&api_token=demo&fmt=json'
    response = requests.get(url)
    response.raise_for_status()  # Raise an exception for bad status codes

    try:
        data = response.json()
        # Extract the 'title' from each article
        headlines = [article['title'] for article in data]
        return headlines
    except (KeyError, ValueError, TypeError):
        print(f"Error parsing API response for {ticker}")
        return []

# Function to perform sentiment analysis on headlines
def analyze_sentiment(headlines):
    """
    Performs sentiment analysis on a list of news headlines using VADER.

    Args:
        headlines: A list of news headlines as strings.

    Returns:
        A pandas DataFrame with columns for headline and sentiment scores (compound, positive, negative, neutral).
    """

    sia = SentimentIntensityAnalyzer()
    sentiments = []

    for headline in headlines:
        sentiment_scores = sia.polarity_scores(headline)
        sentiments.append([headline, sentiment_scores['compound'],
                           sentiment_scores['pos'], sentiment_scores['neg'],
                           sentiment_scores['neu']])

    df = pd.DataFrame(sentiments, columns=['Headline', 'Compound', 'Positive', 'Negative', 'Neutral'])
    return df

# Main function
if __name__ == "__main__":

    ticker = input("Enter stock ticker symbol: ")
    headlines = get_news_headlines(ticker)

    if headlines:
        sentiment_df = analyze_sentiment(headlines)
        print(sentiment_df)

        # Calculate average sentiment
        average_sentiment = sentiment_df['Compound'].mean()
        print(f"Average Sentiment for {ticker}: {average_sentiment}")

        # Further analysis and visualization can be added here
        # (e.g., plotting sentiment scores, identifying most positive/negative headlines)
    else:
        print(f"No news headlines found for {ticker}.")
Copier après la connexion

Sortie :

Python Script for Stock Sentiment Analysis

Importations

  • requêtes : utilisé pour effectuer des requêtes HTTP pour récupérer des données à partir d'une API Web.
  • pandas : Une bibliothèque de manipulation de données utilisée pour créer et gérer des données au format DataFrame.
  • SentimentIntensityAnalyzer de nltk.sentiment.vader : un outil d'analyse des sentiments qui fournit des scores de sentiment pour le texte.

Installation

  • Configuration NLTK : Le script comprend un commentaire indiquant que le lexique VADER doit être téléchargé à l'aide de NLTK. Cela se fait avec nltk.download('vader_lexicon').

Fonctions

get_news_headlines(ticker)

  • Objectif : récupère les titres d'actualité liés à un symbole boursier donné.
  • Paramètres :
    • ticker : une chaîne représentant le symbole boursier (par exemple, "AAPL" pour Apple).
  • Retours : une liste de titres d'actualité sous forme de chaînes.
  • Mise en œuvre :
    • Construit une URL pour une API d'actualités hypothétique à l'aide du ticker fourni.
    • Envoie une requête GET à l'API et vérifie l'état de la réponse réussie.
    • Analyse la réponse JSON pour extraire les titres.
    • Gère les erreurs potentielles lors de l'analyse avec un bloc try-sauf.

analyser_sentiment(titres)

  • Objectif : effectue une analyse des sentiments sur une liste de titres d'actualité.
  • Paramètres :
    • titres : une liste de chaînes, chacune représentant un titre d'actualité.
  • Retours : Un DataFrame pandas contenant les titres et leurs scores de sentiment (composé, positif, négatif, neutre).
  • Mise en œuvre :
    • Initialise le SentimentIntensityAnalyzer.
    • Parcourt chaque titre, calcule les scores de sentiment et les stocke dans une liste.
    • Convertit la liste des données de sentiment en un DataFrame pandas.

Exécution principale

  • Le script invite l'utilisateur à saisir un symbole boursier.
  • Il appelle get_news_headlines pour récupérer les titres du téléscripteur donné.
  • Si des titres sont trouvés, il effectue une analyse des sentiments à l'aide d'analyse_sentiment.
  • Le DataFrame résultant est imprimé, montrant chaque titre avec ses scores de sentiment.
  • Il calcule et imprime le score de sentiment composé moyen pour les titres.
  • Si aucun titre n'est trouvé, il imprime un message l'indiquant.

Conclusion

La polyvalence et les bibliothèques puissantes de Python en font un outil indispensable pour l'analyse de données et les tâches informatiques modernes. Sa capacité à tout gérer, des calculs simples aux analyses boursières complexes, souligne sa valeur dans tous les secteurs. À mesure que Python continue d'évoluer, son rôle dans la stimulation de l'innovation et de l'efficacité dans la prise de décision basée sur les données est appelé à s'étendre encore davantage, consolidant ainsi sa place de pierre angulaire du progrès technologique

remarque : contenu assisté par l'IA

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1671
14
Tutoriel PHP
1276
29
Tutoriel C#
1256
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

See all articles