Créons une plate-forme de collaboration distribuée en temps réel qui permet à plusieurs utilisateurs de travailler ensemble simultanément. Ce projet démontrera la gestion de WebSocket, la résolution des conflits et la synchronisation des états dans Go.
// WebSocket server implementation type CollaborationServer struct { sessions map[string]*Session documents map[string]*Document broadcast chan Message register chan *Client unregister chan *Client } type Client struct { id string session *Session conn *websocket.Conn send chan Message } type Message struct { Type MessageType `json:"type"` Payload interface{} `json:"payload"` } func NewCollaborationServer() *CollaborationServer { return &CollaborationServer{ sessions: make(map[string]*Session), documents: make(map[string]*Document), broadcast: make(chan Message), register: make(chan *Client), unregister: make(chan *Client), } } func (s *CollaborationServer) Run() { for { select { case client := <-s.register: s.handleRegister(client) case client := <-s.unregister: s.handleUnregister(client) case message := <-s.broadcast: s.handleBroadcast(message) } } } func (s *CollaborationServer) handleRegister(client *Client) { session := s.sessions[client.session.ID] if session == nil { session = &Session{ ID: client.session.ID, Clients: make(map[string]*Client), } s.sessions[session.ID] = session } session.Clients[client.id] = client }
// Operational transformation implementation type Operation struct { Type OperationType Position int Content string ClientID string Revision int } type Document struct { ID string Content string History []Operation Revision int mu sync.RWMutex } func (d *Document) ApplyOperation(op Operation) error { d.mu.Lock() defer d.mu.Unlock() // Transform operation against concurrent operations transformedOp := d.transformOperation(op) // Apply the transformed operation switch transformedOp.Type { case OpInsert: d.insertContent(transformedOp.Position, transformedOp.Content) case OpDelete: d.deleteContent(transformedOp.Position, len(transformedOp.Content)) } // Update revision and history d.Revision++ d.History = append(d.History, transformedOp) return nil } func (d *Document) transformOperation(op Operation) Operation { transformed := op // Transform against all concurrent operations for _, historical := range d.History[op.Revision:] { transformed = transform(transformed, historical) } return transformed }
// Real-time presence tracking type PresenceSystem struct { mu sync.RWMutex users map[string]*UserPresence updates chan PresenceUpdate } type UserPresence struct { UserID string Document string Cursor Position Selection Selection LastSeen time.Time } type Position struct { Line int Column int } type Selection struct { Start Position End Position } func (ps *PresenceSystem) UpdatePresence(update PresenceUpdate) { ps.mu.Lock() defer ps.mu.Unlock() user := ps.users[update.UserID] if user == nil { user = &UserPresence{UserID: update.UserID} ps.users[update.UserID] = user } user.Document = update.Document user.Cursor = update.Cursor user.Selection = update.Selection user.LastSeen = time.Now() // Broadcast update to other users ps.updates <- update } func (ps *PresenceSystem) StartCleanup() { ticker := time.NewTicker(30 * time.Second) go func() { for range ticker.C { ps.cleanupInactiveUsers() } }() }
// Conflict resolution system type ConflictResolver struct { strategy ConflictStrategy } type ConflictStrategy interface { Resolve(a, b Operation) Operation } // Last-write-wins strategy type LastWriteWinsStrategy struct{} func (s *LastWriteWinsStrategy) Resolve(a, b Operation) Operation { if a.Timestamp.After(b.Timestamp) { return a } return b } // Three-way merge strategy type ThreeWayMergeStrategy struct{} func (s *ThreeWayMergeStrategy) Resolve(base, a, b Operation) Operation { // Implement three-way merge logic if a.Position == b.Position { if a.Type == OpDelete && b.Type == OpDelete { return a // Both deleted same content } if a.Timestamp.After(b.Timestamp) { return a } return b } // Non-overlapping changes if a.Position < b.Position { return combineOperations(a, b) } return combineOperations(b, a) }
// State synchronization system type SyncManager struct { documents map[string]*DocumentState clients map[string]*ClientState } type DocumentState struct { Content string Version int64 Operations []Operation Checksum string } type ClientState struct { LastSync time.Time SyncVersion int64 } func (sm *SyncManager) SynchronizeState(clientID string, docID string) error { client := sm.clients[clientID] doc := sm.documents[docID] if client.SyncVersion == doc.Version { return nil // Already in sync } // Get operations since last sync ops := sm.getOperationsSince(docID, client.SyncVersion) // Apply operations to client state for _, op := range ops { if err := sm.applyOperation(clientID, op); err != nil { return fmt.Errorf("sync failed: %w", err) } } // Update client sync version client.SyncVersion = doc.Version client.LastSync = time.Now() return nil }
// Real-time chat implementation type ChatSystem struct { rooms map[string]*ChatRoom history map[string][]ChatMessage } type ChatRoom struct { ID string Members map[string]*Client Messages chan ChatMessage } type ChatMessage struct { ID string RoomID string UserID string Content string Timestamp time.Time } func (cs *ChatSystem) SendMessage(msg ChatMessage) error { room := cs.rooms[msg.RoomID] if room == nil { return fmt.Errorf("room not found: %s", msg.RoomID) } // Store message in history cs.history[msg.RoomID] = append(cs.history[msg.RoomID], msg) // Broadcast to room members room.Messages <- msg return nil }
// Message batching implementation type MessageBatcher struct { messages []Message timeout time.Duration size int batch chan []Message } func (mb *MessageBatcher) Add(msg Message) { mb.messages = append(mb.messages, msg) if len(mb.messages) >= mb.size { mb.flush() } } func (mb *MessageBatcher) Start() { ticker := time.NewTicker(mb.timeout) go func() { for range ticker.C { mb.flush() } }() }
// Distributed coordination using Redis type DistributedCoordinator struct { client *redis.Client pubsub *redis.PubSub } func (dc *DistributedCoordinator) PublishUpdate(update Update) error { return dc.client.Publish(ctx, "updates", update).Err() } func (dc *DistributedCoordinator) SubscribeToUpdates() { sub := dc.client.Subscribe(ctx, "updates") for msg := range sub.Channel() { // Handle distributed update dc.handleUpdate(msg) } }
func TestOperationalTransformation(t *testing.T) { doc := NewDocument("test") // Test concurrent inserts op1 := Operation{Type: OpInsert, Position: 0, Content: "Hello"} op2 := Operation{Type: OpInsert, Position: 0, Content: "World"} doc.ApplyOperation(op1) doc.ApplyOperation(op2) expected := "WorldHello" if doc.Content != expected { t.Errorf("expected %s, got %s", expected, doc.Content) } }
func TestRealTimeCollaboration(t *testing.T) { server := NewCollaborationServer() go server.Run() // Create test clients client1 := createTestClient() client2 := createTestClient() // Simulate concurrent editing go simulateEditing(client1) go simulateEditing(client2) // Verify final state time.Sleep(2 * time.Second) verifyDocumentState(t, server) }
La création d'une plate-forme de collaboration en temps réel démontre des concepts complexes de systèmes distribués et la synchronisation des données en temps réel. Le projet présente les puissantes fonctionnalités de concurrence de Go et les capacités de gestion de WebSocket.
Partagez vos expériences en matière de création de systèmes de collaboration en temps réel dans les commentaires ci-dessous !
Tags : #golang #websockets #realtime #collaboration #distributed-systems
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!