Maison développement back-end Tutoriel Python Rendre les CLI Python plus maintenables : un voyage avec le chargement dynamique des commandes

Rendre les CLI Python plus maintenables : un voyage avec le chargement dynamique des commandes

Jan 11, 2025 pm 04:13 PM

Making Python CLIs More Maintainable: A Journey with Dynamic Command Loading

Cet article de blog détaille une amélioration récente de l'interface de ligne de commande (CLI) de notre projet HyperGraph : un système de chargement de commandes dynamique. Initialement, l'ajout de nouvelles commandes CLI était un processus manuel en plusieurs étapes, violant les principes DRY et le principe ouvert/fermé.

Le défi : enregistrement manuel des commandes

Ajout d'une nouvelle commande impliquée :

  1. Création du fichier d'implémentation de la commande.
  2. Mise à jour des importations dans __init__.py.
  3. Ajout de la commande à une liste statique dans le chargeur de commandes.

C'était fastidieux, sujet aux erreurs et nécessitait de modifier le code existant pour chaque nouvelle fonctionnalité, ce qui était loin d'être idéal.

Explorer les solutions : automatisation ou chargement dynamique

Deux solutions ont été envisagées :

  1. Un script d'automatisation pour gérer les modifications de fichiers.
  2. Un système de chargement dynamique exploitant les capacités de découverte de modules de Python.

Bien qu'un script d'automatisation semblait plus simple au départ, il ne traiterait que les symptômes, pas le défaut de conception sous-jacent.

La solution : découverte dynamique des commandes

La solution choisie était un système de chargement dynamique qui enregistre automatiquement les commandes. Le code de base est :

async def load_commands(self) -> None:
    implementations_package = "hypergraph.cli.commands.implementations"

    for _, name, _ in pkgutil.iter_modules([str(self.commands_path)]):
        if name.startswith("_"):  # Skip private modules
            continue

        module = importlib.import_module(f"{implementations_package}.{name}")

        for item_name, item in inspect.getmembers(module):
            if (inspect.isclass(item) and 
                issubclass(item, BaseCommand) and 
                item != BaseCommand):

                command = item(self.system)
                self.registry.register_command(command)
Copier après la connexion

Cette approche offre plusieurs avantages :

  • Élimine l'enregistrement manuel des commandes.
  • Maintient la compatibilité ascendante avec le code existant.
  • Simplifie l'ajout de nouvelles commandes pour placer un nouveau fichier dans le répertoire implementations.
  • Exploite les bibliothèques Python standard, en adhérant à la philosophie des « piles incluses ».

Principales leçons apprises

  1. Évitez les solutions rapides : Alors que l'automatisation offre un soulagement à court terme, le chargement dynamique offre une solution plus durable à long terme.
  2. Préserver la compatibilité : Le maintien des méthodes CommandRegistry originales garantit que le code existant continue de fonctionner.
  3. Gestion robuste des erreurs : Une gestion et une journalisation complètes des erreurs sont essentielles au débogage dans un système dynamique.

Un revers mineur

Un problème mineur est survenu avec une importation de type manquante (Any depuis typing), soulignant l'importance d'une indication de type approfondie en Python.

Étapes futures

Bien que le système dynamique soit implémenté, un script d'automatisation reste une possibilité en tant qu'outil de développement pour générer des modèles de fichiers de commandes. Les projets futurs incluent :

  • Suivi des performances de production.
  • Recueillir les commentaires des développeurs.
  • Mise en œuvre d'autres améliorations basées sur une utilisation réelle.

Conclusion

Cette refactorisation démontre les avantages de réévaluer les approches pour des solutions plus élégantes. Bien qu’il nécessite plus d’effort initial qu’une solution rapide, le résultat est un code plus maintenable, extensible et pythonique. Donner la priorité à la maintenabilité à long terme simplifie le développement futur.

Balises : #Python #Refactoring #CleanCode #CLI #Programming


Pour des informations techniques détaillées, reportez-vous à notre référentiel Codeberg.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1674
14
Tutoriel PHP
1278
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles