Gagnez avec des igits
Défi hebdomadaire 303 : Solutions Python et Perl
Le défi hebdomadaire de Mohammad S. Anwar propose un exercice de codage régulier. Mes solutions, présentées ci-dessous, sont initialement conçues en Python puis adaptées en Perl. Cette double approche améliore la maîtrise du codage.
Défi 303 : Solutions
Tâche 1 : Générer des entiers pairs à 3 chiffres
Description de la tâche :
Étant donné une liste d'entiers positifs, générez tous les entiers uniques, même à 3 chiffres, qui peuvent être formés à l'aide des chiffres de la liste.
Solution Python :
Cette solution Python exploite la fonction itertools.permutations
pour générer efficacement toutes les combinaisons possibles à 3 chiffres. Un ensemble est utilisé pour maintenir l’unicité.
from itertools import permutations def three_digits_even(ints: list) -> list: solution = set() for p in permutations(ints, 3): num_str = "".join(map(str, p)) num = int(num_str) if num >= 100 and num % 2 == 0 and num_str[0] != '0': solution.add(num) return sorted(list(solution))
Solution Perl :
L'équivalent Perl utilise le module Algorithm::Permute
pour les permutations et un hachage pour garantir l'unicité.
use Algorithm::Permute; sub three_digits_even { my @ints = @_; my %seen; my @result; my $p = Algorithm::Permute->new(\@ints, 3); while (my @perm = $p->next) { my $num_str = join('', @perm); my $num = $num_str; if ($num >= 100 and $num % 2 == 0 and $num_str !~ /^0/) { push @result, $num unless $seen{$num}++; } } return sort {$a <=> $b} @result; }
Exemples :
<code># Python print(three_digits_even([2, 1, 3, 0])) # Output: [102, 120, 130, 132, 210, 230, 302, 310, 312, 320] print(three_digits_even([2, 2, 8, 8, 2])) # Output: [222, 228, 282, 288, 822, 828, 882] # Perl print "@{[three_digits_even(2, 1, 3, 0)]}\n"; # Output: 102 120 130 132 210 230 302 310 312 320 print "@{[three_digits_even(2, 2, 8, 8, 2)]}\n"; # Output: 222 228 282 288 822 828 882</code>
Tâche 2 : Supprimer et gagner
Description de la tâche :
Étant donné un tableau d'entiers, trouvez le nombre maximum de points que vous pouvez gagner en supprimant à plusieurs reprises un élément, en gagnant sa valeur, puis en supprimant tous les éléments avec des valeurs inférieures et une de plus que l'élément supprimé.
Solution Python :
Cette solution Python utilise un Counter
pour suivre les fréquences des éléments et utilise une fonction récursive pour explorer différentes stratégies de suppression.
from collections import Counter def delete_and_earn(ints: list) -> int: freq = Counter(ints) return max_score(freq) def max_score(freq: Counter) -> int: max_points = 0 for num in list(freq): # Iterate through a copy to safely delete points = num * freq[num] new_freq = freq.copy() del new_freq[num] if num - 1 in new_freq: del new_freq[num - 1] if num + 1 in new_freq: del new_freq[num + 1] max_points = max(max_points, points + (0 if not new_freq else max_score(new_freq))) return max_points
Solution Perl :
La solution Perl reflète l'approche Python en utilisant un hachage pour le comptage de fréquence et une fonction récursive.
sub delete_and_earn { my %freq = map { $_ => 1 + $freq{$_} // 0 } @_; return max_score(\%freq); } sub max_score { my $freq = shift; my $max_points = 0; foreach my $num (keys %$freq) { my $points = $num * $freq->{$num}; my %new_freq = %$freq; delete $new_freq{$num}; delete $new_freq{$num - 1}; delete $new_freq{$num + 1}; $max_points = max($max_points, $points + (0 || max_score(\%new_freq))); } return $max_points; } sub max { return shift if @_ == 1; return $_[0] > $_[1] ? $_[0] : $_[1]; }
Exemples :
<code># Python print(delete_and_earn([3, 4, 2])) # Output: 6 print(delete_and_earn([2, 2, 3, 3, 3, 4])) # Output: 9 # Perl print delete_and_earn(3, 4, 2), "\n"; # Output: 6 print delete_and_earn(2, 2, 3, 3, 3, 4), "\n"; # Output: 9</code>
Ces solutions démontrent des approches efficaces et claires pour résoudre les deux tâches du Défi hebdomadaire 303. L'utilisation de Python et de Perl met en évidence la nature transférable de la résolution algorithmique de problèmes à travers différents langages de programmation.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
