


Décorateurs paramétrés typés Python dans l'automatisation des tests
Le mécanisme de décoration de Python, combiné à des capacités modernes d'indication de type, améliore considérablement l'automatisation des tests. Cette combinaison puissante, tirant parti de la flexibilité de Python et de la sécurité de type du module typing
, donne lieu à des suites de tests plus maintenables, plus lisibles et plus robustes. Cet article explore les techniques avancées, en se concentrant sur leur application dans les cadres d'automatisation des tests.
Tirer parti des améliorations du module typing
Le module typing
a subi des améliorations significatives :
-
PEP 585 : La prise en charge native des types génériques dans les collections standard minimise la dépendance à l'égard du module
typing
pour les types courants. -
PEP 604 : L'opérateur
|
simplifie les annotations de type Union. -
PEP 647 :
TypeAlias
clarifie les définitions des alias de type. - PEP 649 : L'évaluation différée des annotations accélère le démarrage des grands projets.
Décorateurs paramétrés typés bâtiment
Voici comment créer un décorateur à l'aide de ces fonctionnalités de saisie mises à jour :
from typing import Protocol, TypeVar, Generic, Callable, Any from functools import wraps # TypeVar for generic typing T = TypeVar('T') # Protocol for defining function structure class TestProtocol(Protocol): def __call__(self, *args: Any, **kwargs: Any) -> Any: ... def generic_decorator(param: str) -> Callable[[Callable[..., T]], Callable[..., T]]: """ Generic decorator for functions returning type T. Args: param: A string parameter. Returns: A callable wrapping the original function. """ def decorator(func: Callable[..., T]) -> Callable[..., T]: @wraps(func) # Preserves original function metadata def wrapper(*args: Any, **kwargs: Any) -> T: print(f"Decorator with param: {param}") return func(*args, **kwargs) return wrapper return decorator @generic_decorator("test_param") def test_function(x: int) -> int: """Returns input multiplied by 2.""" return x * 2
Ce décorateur utilise Protocol
pour définir la structure d'une fonction de test, augmentant ainsi la flexibilité pour diverses signatures de fonction dans les frameworks de test.
Application de décorateurs à l'automatisation des tests
Examinons comment ces décorateurs améliorent l'automatisation des tests :
1. Tests spécifiques à la plate-forme utilisant Literal
from typing import Literal, Callable, Any import sys def run_only_on(platform: Literal["linux", "darwin", "win32"]) -> Callable: """ Runs a test only on the specified platform. Args: platform: Target platform. Returns: A callable wrapping the test function. """ def decorator(func: Callable) -> Callable: @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: if sys.platform == platform: return func(*args, **kwargs) print(f"Skipping test on platform: {sys.platform}") return None return wrapper return decorator @run_only_on("linux") def test_linux_feature() -> None: """Linux-specific test.""" pass
Literal
garantit que les vérificateurs de type reconnaissent les valeurs platform
valides, clarifiant ainsi quels tests s'exécutent sur quelles plates-formes, ce qui est crucial pour les tests multiplateformes.
2. Décorateurs de délai d'attente avec Threading
from typing import Callable, Any, Optional import threading import time from concurrent.futures import ThreadPoolExecutor, TimeoutError def timeout(seconds: int) -> Callable: """ Enforces a timeout on test functions. Args: seconds: Maximum execution time. Returns: A callable wrapping the function with timeout logic. """ def decorator(func: Callable) -> Callable: @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Optional[Any]: with ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(func, *args, **kwargs) try: return future.result(timeout=seconds) except TimeoutError: print(f"Function {func.__name__} timed out after {seconds} seconds") return None return wrapper return decorator @timeout(5) def test_long_running_operation() -> None: """Test that times out if it takes too long.""" time.sleep(10) # Triggers timeout
Cela utilise le threading pour une fonctionnalité de délai d'attente fiable, essentielle pour contrôler le temps d'exécution des tests.
3. Mécanisme de nouvelle tentative avec types d'union
from typing import Callable, Any, Union, Type, Tuple, Optional import time def retry_on_exception( exceptions: Union[Type[Exception], Tuple[Type[Exception], ...]], attempts: int = 3, delay: float = 1.0 ) -> Callable: """ Retries a function on specified exceptions. Args: exceptions: Exception type(s) to catch. attempts: Maximum retry attempts. delay: Delay between attempts. Returns: A callable wrapping the function with retry logic. """ def decorator(func: Callable) -> Callable: @wraps(func) def wrapper(*args: Any, **kwargs: Any) -> Any: last_exception: Optional[Exception] = None for attempt in range(attempts): try: return func(*args, **kwargs) except exceptions as e: last_exception = e print(f"Attempt {attempt + 1} failed with {type(e).__name__}: {str(e)}") time.sleep(delay) if last_exception: raise last_exception return wrapper return decorator @retry_on_exception(Exception, attempts=5) def test_network_connection() -> None: """Test network connection with retry logic.""" pass
Cette version raffinée utilise des astuces de type complètes, une gestion robuste des exceptions et un délai de nouvelle tentative configurable. Les types Union
permettent une certaine flexibilité dans la spécification des types d'exception.
Conclusion
L'intégration des fonctionnalités de saisie avancées de Python dans les décorateurs améliore à la fois la sécurité des types et la lisibilité du code, améliorant ainsi considérablement les cadres d'automatisation des tests. Les définitions de types explicites garantissent que les tests s'exécutent dans des conditions correctes, avec une gestion des erreurs et des contraintes de performances appropriées. Cela conduit à des tests plus robustes, maintenables et efficaces, particulièrement précieux dans les environnements de test vastes, distribués ou multiplateformes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.
