


Comment puis-je transposer efficacement des colonnes et des lignes dans SQL ?
Transposition de colonnes et de lignes SQL : un guide pratique
SQL nécessite souvent de transposer les données – en convertissant l'orientation du tableau de verticale (colonnes) à horizontale (lignes) ou inversement. Bien que la commande PIVOT
existe, elle peut être fastidieuse. Ce guide explore des alternatives plus simples.
Méthode 1 : déclaration UNION ALL, Aggregate et CASE
Cette approche utilise UNION ALL
pour annuler le pivotement, puis une fonction d'agrégation (ici, SUM
) et une instruction CASE
pour repivoter :
select name, sum(case when color = 'Red' then value else 0 end) Red, sum(case when color = 'Green' then value else 0 end) Green, sum(case when color = 'Blue' then value else 0 end) Blue from ( select color, Paul value, 'Paul' name from yourTable union all select color, John value, 'John' name from yourTable union all select color, Tim value, 'Tim' name from yourTable union all select color, Eric value, 'Eric' name from yourTable ) src group by name
Méthode 2 : UNPIVOT et PIVOT statiques
Connaître le nombre de colonnes à transformer permet d'avoir une solution statique UNPIVOT
et PIVOT
:
select name, [Red], [Green], [Blue] from ( select color, name, value from yourtable unpivot ( value for name in (Paul, John, Tim, Eric) ) unpiv ) src pivot ( sum(value) for color in ([Red], [Green], [Blue]) ) piv
Méthode 3 : Pivot dynamique pour les colonnes variables
Lorsqu'il s'agit d'un nombre dynamique de colonnes et de couleurs, le SQL dynamique offre une solution :
DECLARE @colsUnpivot AS NVARCHAR(MAX), @query AS NVARCHAR(MAX), @colsPivot as NVARCHAR(MAX) select @colsUnpivot = stuff((select ','+quotename(C.name) from sys.columns as C where C.object_id = object_id('yourtable') and C.name <> 'color' for xml path('')), 1, 1, '') select @colsPivot = STUFF((SELECT ',' + quotename(color) from yourtable t FOR XML PATH(''), TYPE ).value('.', 'NVARCHAR(MAX)') ,1,1,'') set @query = 'select name, '+@colsPivot+' from ( select color, name, value from yourtable unpivot ( value for name in ('+@colsUnpivot+') ) unpiv ) src pivot ( sum(value) for color in ('+@colsPivot+') ) piv' exec(@query)
Ces méthodes offrent des approches polyvalentes de transposition de données en SQL, s'adaptant aux divers besoins de manipulation de données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Le rôle principal de MySQL dans les applications Web est de stocker et de gérer les données. 1.MySQL traite efficacement les informations utilisateur, les catalogues de produits, les enregistrements de transaction et autres données. 2. Grâce à SQL Query, les développeurs peuvent extraire des informations de la base de données pour générer du contenu dynamique. 3.MySQL fonctionne basé sur le modèle client-serveur pour assurer une vitesse de requête acceptable.

INNODB utilise des redologues et des undologs pour assurer la cohérence et la fiabilité des données. 1. REDOLOGIE RÉCLABLIER MODIFICATION DE PAGE DES DONNÉES Pour assurer la récupération des accidents et la persistance des transactions. 2.Undologs Enregistre la valeur des données d'origine et prend en charge le Rollback de la transaction et MVCC.

Par rapport à d'autres langages de programmation, MySQL est principalement utilisé pour stocker et gérer les données, tandis que d'autres langages tels que Python, Java et C sont utilisés pour le traitement logique et le développement d'applications. MySQL est connu pour ses performances élevées, son évolutivité et son support multiplateforme, adapté aux besoins de gestion des données, tandis que d'autres langues présentent des avantages dans leurs domaines respectifs tels que l'analyse des données, les applications d'entreprise et la programmation système.

La cardinalité de l'index MySQL a un impact significatif sur les performances de la requête: 1. L'indice de cardinalité élevé peut réduire plus efficacement la plage de données et améliorer l'efficacité de la requête; 2. L'indice de cardinalité faible peut entraîner une analyse complète de la table et réduire les performances de la requête; 3. Dans l'indice conjoint, des séquences de cardinalité élevées doivent être placées devant pour optimiser la requête.

Les opérations de base de MySQL incluent la création de bases de données, les tables et l'utilisation de SQL pour effectuer des opérations CRUD sur les données. 1. Créez une base de données: CreatedAtAbaseMy_First_DB; 2. Créez un tableau: CreateTableBooks (idIntauto_inCmentPrimaryKey, TitleVarchar (100) notnull, AuthorVarchar (100) notnull, publied_yearint); 3. Données d'insertion: INSERTINTOBOOKS (titre, auteur, publié_year) VA

MySQL convient aux applications Web et aux systèmes de gestion de contenu et est populaire pour son open source, ses performances élevées et sa facilité d'utilisation. 1) Par rapport à PostgreSQL, MySQL fonctionne mieux dans les requêtes simples et les opérations de lecture simultanées élevées. 2) Par rapport à Oracle, MySQL est plus populaire parmi les petites et moyennes entreprises en raison de son open source et de son faible coût. 3) Par rapport à Microsoft SQL Server, MySQL est plus adapté aux applications multiplateformes. 4) Contrairement à MongoDB, MySQL est plus adapté aux données structurées et au traitement des transactions.

InnodBBufferPool réduit les E / S de disque en mettant en cache des données et des pages d'indexation, améliorant les performances de la base de données. Son principe de travail comprend: 1. La lecture des données: lire les données de BufferPool; 2. Écriture de données: Après avoir modifié les données, écrivez dans BufferPool et actualisez-les régulièrement sur le disque; 3. Gestion du cache: utilisez l'algorithme LRU pour gérer les pages de cache; 4. Mécanisme de lecture: Chargez à l'avance des pages de données adjacentes. En dimensionner le tampon et en utilisant plusieurs instances, les performances de la base de données peuvent être optimisées.

MySQL gère efficacement les données structurées par la structure de la table et la requête SQL, et met en œuvre des relations inter-tableaux à travers des clés étrangères. 1. Définissez le format de données et tapez lors de la création d'une table. 2. Utilisez des clés étrangères pour établir des relations entre les tables. 3. Améliorer les performances par l'indexation et l'optimisation des requêtes. 4. Bases de données régulièrement sauvegarde et surveillent régulièrement la sécurité des données et l'optimisation des performances.
