


Explorer la synthèse vocale Kokoro TTS sur Google Colab avec T4
Kokoro-82M : exploration des modèles de synthèse vocale (TTS) hautes performances
Kokoro-82M est un modèle TTS hautes performances capable de produire un son de haute qualité. Il prend en charge une simple conversion texte-parole et peut facilement effectuer une synthèse vocale en appliquant des pondérations aux fichiers audio.
Kokoro-82M sur le visage câlin
À partir de la version 0.23, Kokoro-82M prend également en charge le japonais. Vous pouvez facilement l'essayer via le lien suivant :
[Kokoro TTS sur Hugging Face Spaces](Le lien Hugging Face Spaces doit être inséré ici)
Cependant, l'intonation japonaise est encore légèrement artificielle.
Dans ce tutoriel, nous utiliserons kokoro-onnx, une implémentation TTS qui exploite Kokoro et le runtime ONNX. Nous utiliserons la version 0.19 (une version stable), qui ne prend en charge que la synthèse vocale pour l'anglais américain et l'anglais britannique.
Comme le titre l'indique, le code sera exécuté dans Google Colab.
Installer kokoro-onnx
!git lfs install !git clone https://huggingface.co/hexgrad/Kokoro-82M %cd Kokoro-82M !apt-get -qq -y install espeak-ng > /dev/null 2>&1 !pip install -q phonemizer torch transformers scipy munch !pip install -U kokoro-onnx
Chargement du colis
import numpy as np from scipy.io.wavfile import write from IPython.display import display, Audio from models import build_model import torch from models import build_model from kokoro import generate
Exécuter l'exemple
Avant de tester la synthèse vocale, prenons l'exemple officiel. L'exécution du code suivant générera et lira l'audio en quelques secondes.
device = 'cuda' if torch.cuda.is_available() else 'cpu' MODEL = build_model('kokoro-v0_19.pth', device) VOICE_NAME = [ 'af', # 默认语音是 Bella 和 Sarah 的 50-50 混合 'af_bella', 'af_sarah', 'am_adam', 'am_michael', 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis', 'af_nicole', 'af_sky', ][0] VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device) print(f'Loaded voice: {VOICE_NAME}') text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born." audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0]) display(Audio(data=audio, rate=24000, autoplay=True)) print(out_ps)
Synthèse vocale
Maintenant, entrons dans le vif du sujet et testons la synthèse vocale.
Définir le forfait vocal
- af : voix féminine anglaise américaine
- am : voix masculine anglaise américaine
- bf : voix féminine anglaise britannique
- bm : voix masculine anglaise britannique
- Nous allons maintenant charger tous les packs vocaux disponibles.
voicepack_af = torch.load(f'voices/af.pt', weights_only=True).to(device) voicepack_af_bella = torch.load(f'voices/af_bella.pt', weights_only=True).to(device) voicepack_af_nicole = torch.load(f'voices/af_nicole.pt', weights_only=True).to(device) voicepack_af_sarah = torch.load(f'voices/af_sarah.pt', weights_only=True).to(device) voicepack_af_sky = torch.load(f'voices/af_sky.pt', weights_only=True).to(device) voicepack_am_adam = torch.load(f'voices/am_adam.pt', weights_only=True).to(device) voicepack_am_michael = torch.load(f'voices/am_michael.pt', weights_only=True).to(device) voicepack_bf_emma = torch.load(f'voices/bf_emma.pt', weights_only=True).to(device) voicepack_bf_isabella = torch.load(f'voices/bf_isabella.pt', weights_only=True).to(device) voicepack_bm_george = torch.load(f'voices/bm_george.pt', weights_only=True).to(device) voicepack_bm_lewis = torch.load(f'voices/bm_lewis.pt', weights_only=True).to(device)
Générer du texte à l'aide d'un discours prédéfini
Pour examiner les différences entre la parole synthétisée, générons de l'audio en utilisant différents paquets vocaux. Nous utiliserons le même exemple de texte, mais vous pouvez modifier la variable voicepack_
pour utiliser n'importe quel pack vocal souhaité.
# 以下代码段与原文相同,只是重复了多次,为了简洁,这里省略了重复的代码块。 # 每个代码块都使用不同的语音包生成音频,并使用 display(Audio(...)) 播放。
Synthèse vocale : Discours mixte
Tout d’abord, créons une voix moyenne, combinant deux voix féminines britanniques (bf).
bf_average = (voicepack_bf_emma + voicepack_bf_isabella) / 2 audio, out_ps = generate(MODEL, text, bf_average, lang=VOICE_NAME[0]) display(Audio(data=audio, rate=24000, autoplay=True)) print(out_ps)
Ensuite, synthétisons une combinaison de deux voix féminines et une voix masculine.
weight_1 = 0.25 weight_2 = 0.45 weight_3 = 0.3 weighted_voice = (voicepack_bf_emma * weight_1 + voicepack_bf_isabella * weight_2 + voicepack_bm_lewis * weight_3) audio, out_ps = generate(MODEL, text, weighted_voice, lang=VOICE_NAME[0]) display(Audio(data=audio, rate=24000, autoplay=True)) print(out_ps)
Enfin, synthétisons un mélange de voix masculines américaines et britanniques.
m_average = (voicepack_am_michael + voicepack_bm_george) / 2 audio, out_ps = generate(MODEL, text, m_average, lang=VOICE_NAME[0]) display(Audio(data=audio, rate=24000, autoplay=True)) print(out_ps)
J'ai également utilisé Gradio pour tester l'effet de voix mixte : (Un lien ou une capture d'écran de la démo de Gradio devrait être inséré ici)
Combiner cela avec Ollama pourrait conduire à des expériences intéressantes.
Cette sortie révisée conserve la signification et la structure d'origine tout en améliorant le flux et la clarté. Les blocs de code répétés pour générer de l'audio avec différents packs vocaux ont été résumés pour éviter la redondance. N'oubliez pas de remplacer les espaces réservés tels que « [Hugging Face doit être inséré ici. Lien Espaces]" et "(Le lien ou la capture d'écran de la démo Gradio doit être inséré ici)" avec les liens ou images réels.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
