python创建和使用字典实例详解
字典是python中唯一内建的映射类型。字典中的值并没有特殊的顺序,但是都存储在一个特定的键(key)里。
键可以是数字,字符串甚至是元组。
1. 创建和使用字典
字典可以通过下面的方式创建:
phonebook = {'Alice':'2341','Beth':'9102','Ceil':'3258'}
字典由多个键及与其对应的值构成的对组成。每个键和它的值之间用冒号(:)隔开,项之间用逗号(,)隔开,而整个字典是由一对大括号括起来。空字典:{}
1.1 dict函数
可以用dict函数通过映射(比如其他字典)或者(键,值)这样的序列建立字典。
>>> items = [('name','Gumby'),('age'.42)]
>>> d = dict(items)
>>> d
{'age':42,'name':'Gumby'}
>>> d = dict(name='Gumby','age'=42)
>>> d
{'age':42,'name':'Gumby'}
1.2 基本字典操作
(1)len(d)返回d中项(键-值对)的数量;
(2)d[k]返回关联到k上的值;
(3)d[k]=v将值v关联到键k上;
(4)del d[k]删除键为k的项;
(5)k in d检查d中是否有含键为k的项;
1.3 字典的格式化字符串
字典格式化字符串:在每个转换说明符中的%字符后面,可以加上(用圆括号括起来的)键,后面再跟上其他说明元素。
只要所有给出的键都能在字典中找到,就可以获得任意数量的转换说明符。
>>> temple = ‘the price of cake is $%(cake)s,the price of milk of cake is $%(milk)s. $%(cake)s is OK'
>>> price = {'cake':4,'milk':5}
>>>print temple % price
‘the price of cake is $4,the price of milk of cake is $5. $4 is OK'
1.4 字典方法
1.4.1 clear
clear方法清除字典中所有的项,这是个原地操作,无返回值(或者说返回none)。
考虑下面2种情况:
a.将x关联到一个新的空字典来清空它,这对y一点影响都没有,y还是关联到原先的字典
>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key':'value'}
>>> x = {}
>>> y
{'key':'value'}
b.如果想清空原始字典中所有的元素,必须用clear方法。
>>> x = {}
>>> y = x
>>> x['key'] = 'value'
>>> y
{'key':'value'}
>>> x.clear()
>>> y
{}
1.4.2 copy
copy方法返回一个具有相同键-值对的新字典(这个方法实现的是浅复制,因为值本身是相同的,而不是副本)
在副本中替换值时,原始字典不受影响,但是如果修改了某个值,原始字典会改变。]
>>> x = {'a':1,'b':[2,3,4]}
>>> y = x.copy()
>>> y['a'] = 5
>>> y['b'].remove(3)
>>> y
{'a':5,'b':[2,4]}
>>> x
{'a':1,'b':[2,4]}
避免这个问题的方法是使用深度复制-deepcopy(),复制其包含所有的值。
>>> x = {'a':1,'b':[2,3,4]}
>>> y = x.copy()
>>> z = x.deepcopy()
>>> x['a'].append(5)
>>> y
{'a':1,5,'b':[2,3.4]}
>>> z
{'a':1,'b':[2,3,4]}
1.4.3 fromkeys
fromkeys方法使用给定的键建立新的字典,每个键默认对应的值为None,可以直接在所有字典的类型dict上调用此方法。如果不想使用默认值,也可以自己提供值。
>>> {}.fromkeys(['name','age'])
{'age':None,'name':None}
>>>
>>> dict.fromkeys(['name','age'],'unknow')
{'age':'unknow','name':'unknow'}
1.4.4 get
get方法是个更宽松的访问字典项的方法。当使用get访问一个不存在的键时,会得到None值。还可以自定义“默认”值,替换None。
>>> d = {}
>>> print d.get('name')
None
>>> d.get("name",'N/A')
'N/A'
>>> d[''name] = 'Eric'
>>> d.get('name')
'Eric'
1.4.5 has_key
has_key方法可以检查字典中是否含有给出的键。d.has_key(k)
>>> d = {}
>>> d.has_key('name')
False
1.4.6 items和iteritems
items方法将所有的字典项以列表方式返回,但是列表中的每一项(键,值)返回时并没有特殊的顺序。iteritems方法的作用大致相同,但是会返回一个迭代器对象而不是列表:
>>> d = {'a':1,'b':2,'c':3}
>>>d.items
[('a',1),('b',2),('c',3)]
>>> it = d.iteritems()
>>> it
>>> list(it)
[('a',1),('b',2),('c',3)]
1.4.7 keys和iterkeys
keys方法将字典中的键以列表形式返回,而iterkeys则返回针对键的迭代器。
1.4.8 pop方法
pop方法用来获得对应给定键的值,然后将这个键-值对从字典中移除。
>>> d = {'a':1,'b':2,'c':3}
>>> d.pop('a')
>>> d
{'b':2,'c':3}
1.4.10 setdefault
setdefault方法在某种程度上类似于get方法,就是能够获得与给定键相关联的值,还能在字典中不含有给定键的情况下设定相应的键值。
>>> d = {}
>>> d.setdefault('name','N/A')
'N/A'
>>> d
{'name': 'N/A'}
>>> d.setdefault('name',A)
'N/A'
如上例,当键存在时,返回默认值(可选)并且相应地更新字典,如果键存在,那么返回与其对应的值,但不改变字典。
1.4.11 update
update方法可以利用一个字典项更新另一个字典。提供的字典项会被添加到旧的字典中,若有相同的键则会进行覆盖。
>>> d = {'a':1,'b':2,'c':3}
>>> x = {'a':5,'d':6}
>>> d.update(x)
>>> d
{'a': 5, 'c': 3, 'b': 2, 'd': 6}
1.4.12 values和itervalues
values方法以列表的形式返回字典中的值(itervalues返回值的迭代器),与返回键的列表不同的是,返回值列表中可以包含重复的元素。
>>> d = {}
>>> d[1]=1
>>> d[2]=2
>>> d[3]=3
>>> d[4]=1
>>> d
{1: 1, 2: 2, 3: 3, 4: 1}
>>> d.values()
[1, 2, 3, 1]

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE
