兼容IE,firefox的获取节点的文本值的javascript代码_javascript技巧
我们知道通过浏览器自带的innerHTML属性能够获取节点的所包含的字符串的值,比如有如下节点:
通过
var obj=document.getElementById("test");alert(obj.innerHTML);//返回的值是i'm strong
如果我想得到节点的文本值,也就不包括标签以为的字符串,怎么办呢。这里的文本值是:i'm strong
//非Mozilla浏览器:obj.innerText;//其他的浏览器obj.firstChild.nodeValue;
先提供一个通用的方法来解决兼容问题:
完整代码如下:
代码
[Ctrl+A 全选 注:如需引入外部Js需刷新才能执行]
让FireFox支持innerText的实现代码
转载请注明来自:http://www.cnblogs.com/wbkt2t/

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Lors de la programmation informatique, il est parfois nécessaire de trouver le poids minimum d'un sous-arbre provenant d'un nœud spécifique, à condition que le sous-arbre ne puisse pas contenir de nœuds éloignés de plus de D unités du nœud spécifié. Ce problème se pose dans divers domaines et applications, notamment la théorie des graphes, les algorithmes arborescents et l'optimisation des réseaux. Un sous-arbre est un sous-ensemble d'une structure arborescente plus grande, le nœud spécifié servant de nœud racine du sous-arbre. Un sous-arbre contient tous les descendants du nœud racine et leurs arêtes de connexion. Le poids d'un nœud fait référence à une valeur spécifique attribuée à ce nœud, qui peut représenter son importance, sa signification ou d'autres mesures pertinentes. Dans ce problème, l’objectif est de trouver le poids minimum parmi tous les nœuds d’un sous-arbre tout en limitant le sous-arbre aux nœuds situés au plus à D unités du nœud racine. Dans l'article suivant, nous approfondirons la complexité de l'extraction des poids minimum des sous-arbres.

Comment implémenter les fonctions de copie et de coupure de nœuds des cartes mentales via Vue et jsmind ? La carte mentale est un outil de réflexion courant qui peut nous aider à organiser nos pensées et à trier notre logique de pensée. Les fonctions de copie et de coupe de nœuds sont des opérations couramment utilisées dans les cartes mentales, qui nous permettent de réutiliser plus facilement les nœuds existants et d'améliorer l'efficacité de l'organisation de la réflexion. Dans cet article, nous utiliserons les deux outils Vue et jsmind pour implémenter les fonctions de copie et de coupe de nœuds de la carte mentale. Tout d'abord, nous devons installer Vue et jsmind et créer

Les méthodes de suppression de nœuds dans js sont : 1. La méthode removeChild() est utilisée pour supprimer le nœud enfant spécifié du nœud parent. Elle nécessite deux paramètres. Le premier paramètre est le nœud enfant à supprimer et le deuxième paramètre est. le nœud parent. 2. La méthode parentNode.removeChild() peut être appelée directement via le nœud parent pour supprimer le nœud enfant ; 3. La méthode remove() peut supprimer directement le nœud sans spécifier le nœud parent ; L'attribut innerHTML est utilisé pour supprimer le contenu du nœud.

C++ a une macro, qui est définie comme un morceau de code ou une valeur attendue, et elle sera réutilisée chaque fois que l'utilisateur en aura besoin. L'algorithme de Floyd-Walshall est le processus permettant de trouver le chemin le plus court entre toutes les paires de sommets dans un graphe pondéré donné. L'algorithme suit une approche de programmation dynamique pour trouver le graphique de poids minimum. Comprenons la signification de l'algorithme de Floyd-Walshall à travers un diagramme - prenons le sommet 1 comme source et le sommet 4 comme destination et trouvons le chemin le plus court entre eux. Nous avons vu qu'il existe deux chemins qui peuvent être connectés au sommet cible 4. 1->4 – l'arête a un poids de 51->8->3->4 – le poids de l'arête (1+2+1) est 4. Dans le graphique I donné, nous voyons la plus petite arête reliant deux sommets. Voici donc le sommet

Cet article présente principalement comment créer, supprimer, ajouter et remplacer des nœuds d'éléments dans js. J'espère qu'il sera utile aux amis dans le besoin !

Pour vérifier si un chemin donné entre deux centres d'un graphique est conforme au chemin le plus court, cela peut être calculé en comparant le poids total du bord le long du chemin donné à la distance la plus courte entre des combinaisons des mêmes centres en utilisant un chemin le plus court fiable, tel que Calcul de Dijkstra ou calcul de Floyd-Warshall. Si tous les poids des bords sur un chemin donné correspondent à la suppression la plus limitée, alors cela représente le chemin le plus simple. Également : si le poids global du bord est plus important que la distance la plus courte, cela indique qu'il existe une courte distance entre les deux centres dans le graphique. Méthodes utilisées Algorithme de Dijkstra Algorithme Floyd−Warshall avec coût d'inversion marginal Algorithme gourmand Le calcul de Dijkstra peut être un calcul de parcours de graphe populaire

Étant donné n nœuds, la tâche consiste à imprimer le nième nœud à la fin de la liste chaînée. Le programme ne doit pas modifier l'ordre des nœuds dans la liste, mais doit uniquement imprimer le nième nœud du dernier nœud de la liste chaînée. Exemple d'entrée-:102030405060 N=3Output-:40 Dans l'exemple ci-dessus, en partant du premier nœud, parcourez jusqu'à n nœuds, c'est-à-dire 10,2030,40,50,60, donc l'avant-dernier nœud est 40. . Au lieu de parcourir toute la liste de manière aussi efficace, l'approche que vous pouvez suivre consiste à obtenir un pointeur temporaire vers, par exemple, la température du type de nœud, et à définir ce pointeur temporaire sur le premier nœud pointé par le pointeur principal pour définir le compteur sur celui de la liste.

OpenAI est un nœud (bien qu’important) dans le monde du dialogue robot-robot, mais ce n’est pas le centre. ChatGPT a lancé un mécanisme de plugin, ce qui constitue un développement très passionnant. Tout le monde a déclaré à l'unanimité qu'« un système d'exploitation était né ». Cette affirmation est complètement fausse. OpenAI est un nœud (bien qu’important) dans le monde du dialogue robot-robot, mais ce n’est pas le centre. J'ai toujours eu une image en tête : un monde où les robots parlent à des robots. Les gens discutent avec un robot et laissent le robot aider l'humain à accomplir des tâches grâce à ses amis robots. Le plugin ChatGPT démontre parfaitement le monde
