使用flume+kafka+storm构建实时日志分析系统
本文只会涉及flume和kafka的结合,kafka和storm的结合可以参考其他博客
1. flume安装使用
下载flume安装包http://www.apache.org/dyn/closer.cgi/flume/1.5.2/apache-flume-1.5.2-bin.tar.gz
解压$ tar -xzvf apache-flume-1.5.2-bin.tar.gz -C /opt/flume
flume配置文件放在conf文件目录下,执行文件放在bin文件目录下。
1)配置flume
进入conf目录将flume-conf.properties.template拷贝一份,并命名为自己需要的名字
$ cp flume-conf.properties.template flume.conf
修改flume.conf的内容,我们使用file sink来接收channel中的数据,channel采用memory channel,source采用exec source,配置文件如下:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>agent.sources = seqGenSrc</li><li>agent.channels = memoryChannel</li><li>agent.sinks = loggerSink</li><li></li><li># For each one of the sources, the type is defined</li><li>agent.sources.seqGenSrc.type = exec</li><li>agent.sources.seqGenSrc.command = tail -F /data/mongodata/mongo.log</li><li>#agent.sources.seqGenSrc.bind = 172.168.49.130</li><li></li><li># The channel can be defined as follows.</li><li>agent.sources.seqGenSrc.channels = memoryChannel</li><li></li><li># Each sink's type must be defined</li><li>agent.sinks.loggerSink.type = file_roll</li><li>agent.sinks.loggerSink.sink.directory = /data/flume</li><li></li><li>#Specify the channel the sink should use</li><li>agent.sinks.loggerSink.channel = memoryChannel</li><li></li><li># Each channel's type is defined.</li><li>agent.channels.memoryChannel.type = memory</li><li></li><li># Other config values specific to each type of channel(sink or source)</li><li># can be defined as well</li><li># In this case, it specifies the capacity of the memory channel</li><li>agent.channels.memoryChannel.capacity = 1000</li><li>agent.channels.memory4log.transactionCapacity = 100</li></ol>
Copier après la connexion
2)运行flume agent
切换到bin目录下,运行一下命令:
$ ./flume-ng agent --conf ../conf -f ../conf/flume.conf --n agent -Dflume.root.logger=INFO,console
在/data/flume目录下可以看到生成的日志文件。
2. 结合kafka
由于flume1.5.2没有kafka sink,所以需要自己开发kafka sink
可以参考flume 1.6里面的kafka sink,但是要注意使用的kafka版本,由于有些kafka api不兼容的
这里只提供核心代码,process()内容。
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>Sink.Status status = Status.READY;<br /> </li><li><br /></li><li>Channel ch = getChannel();<br /></li><li>Transaction transaction = null;<br /></li><li>Event event = null;<br /></li><li>String eventTopic = null;<br /></li><li>String eventKey = null;<br /></li><li><br /></li><li>try {<br /></li><li>transaction = ch.getTransaction();<br /></li><li>transaction.begin();<br /></li><li>messageList.clear();<br /></li><li><br /></li><li>if (type.equals("sync")) {<br /></li><li>event = ch.take();<br /></li><li><br /></li><li> if (event != null) {<br /></li><li> byte[] tempBody = event.getBody();<br /></li><li> String eventBody = new String(tempBody,"UTF-8");<br /></li><li> Map<String, String> headers = event.getHeaders();<br /></li><li><br /></li><li> if ((eventTopic = headers.get(TOPIC_HDR)) == null) {<br /></li><li> eventTopic = topic;<br /></li><li> }<br /></li><li><br /></li><li> eventKey = headers.get(KEY_HDR);<br /></li><li><br /></li><li> if (logger.isDebugEnabled()) {<br /></li><li> logger.debug("{Event} " + eventTopic + " : " + eventKey + " : "<br /></li><li> + eventBody);<br /></li><li> }<br /></li><li> <br /></li><li> ProducerData<String, Message> data = new ProducerData<String, Message><br /></li><li> (eventTopic, new Message(tempBody));<br /></li><li> <br /></li><li> long startTime = System.nanoTime();<br /></li><li> logger.debug(eventTopic+"++++"+eventBody);<br /></li><li> producer.send(data);<br /></li><li> long endTime = System.nanoTime(); </li><li> }<br /></li><li>} else {<br /></li><li>long processedEvents = 0;<br /></li><li>for (; processedEvents < batchSize; processedEvents += 1) {<br /></li><li>event = ch.take();<br /></li><li><br /></li><li> if (event == null) {<br /></li><li> break;<br /></li><li> }<br /></li><li><br /></li><li> byte[] tempBody = event.getBody();<br /></li><li> String eventBody = new String(tempBody,"UTF-8");<br /></li><li> Map<String, String> headers = event.getHeaders();<br /></li><li><br /></li><li> if ((eventTopic = headers.get(TOPIC_HDR)) == null) {<br /></li><li> eventTopic = topic;<br /></li><li> }<br /></li><li><br /></li><li> eventKey = headers.get(KEY_HDR);<br /></li><li><br /></li><li> if (logger.isDebugEnabled()) {<br /></li><li> logger.debug("{Event} " + eventTopic + " : " + eventKey + " : "<br /></li><li> + eventBody);<br /></li><li> logger.debug("event #{}", processedEvents);<br /></li><li> }<br /></li><li><br /></li><li> // create a message and add to buffer<br /></li><li> ProducerData<String, String> data = new ProducerData<String, String><br /></li><li> (eventTopic, eventBody);<br /></li><li> messageList.add(data);<br /></li><li>}<br /></li><li><br /></li><li>// publish batch and commit.<br /></li><li> if (processedEvents > 0) {<br /></li><li> long startTime = System.nanoTime(); </li><li> long endTime = System.nanoTime(); </li><li> }<br /></li><li>}<br /></li><li><br /></li><li>transaction.commit();<br /></li><li>} catch (Exception ex) {<br /></li><li>String errorMsg = "Failed to publish events";<br /></li><li>logger.error("Failed to publish events", ex);<br /></li><li>status = Status.BACKOFF;<br /></li><li>if (transaction != null) {<br /></li><li>try {<br /></li><li>transaction.rollback(); </li><li>} catch (Exception e) {<br /></li><li>logger.error("Transaction rollback failed", e);<br /></li><li>throw Throwables.propagate(e);<br /></li><li>}<br /></li><li>}<br /></li><li>throw new EventDeliveryException(errorMsg, ex);<br /></li><li>} finally {<br /></li><li>if (transaction != null) {<br /></li><li>transaction.close();<br /></li><li>}<br /></li><li>}<br /></li><li><br /></li><li>return status; </li></ol>
Copier après la connexion
下一步,修改flume配置文件,将其中sink部分的配置改成kafka sink,如:
<ol style="margin:0 1px 0 0px;padding-left:40px;" start="1" class="dp-css"><li>producer.sinks.r.type = org.apache.flume.sink.kafka.KafkaSink<br /> </li><li>producer.sinks.r.brokerList = bigdata-node00:9092<br /></li><li>producer.sinks.r.requiredAcks = 1<br /></li><li>producer.sinks.r.batchSize = 100<br /></li><li>#producer.sinks.r.kafka.producer.type=async<br /></li><li>#producer.sinks.r.kafka.customer.encoding=UTF-8<br /></li><li>producer.sinks.r.topic = testFlume1</li></ol>
Copier après la connexion
type指向kafkasink所在的完整路径
下面的参数都是kafka的一系列参数,最重要的是brokerList和topic参数
现在重新启动flume,就可以在kafka的对应topic下查看到对应的日志
http://www.bkjia.com/PHPjc/1109725.htmlwww.bkjia.comtruehttp://www.bkjia.com/PHPjc/1109725.htmlTechArticle使用flume+kafka+storm构建实时日志分析系统 本文只会涉及flume和kafka的结合,kafka和storm的结合可以参考其他博客 1. flume安装使用 下载flume安装...