浅析PHP中cookie与session技术_PHP教程
浅析PHP中cookie与session技术
1.cookie是什么?
cookie指某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密)。
通俗来理解就是,你去一个专卖店或者超市买东西,然后店里给你办一张会员卡,以后你的身份和购买信息都存在这个卡里,而这个卡放你身上。之后每次去买东西的时候只需要刷卡就可以了,不用再登记或者记录其他的信息。
然后将这段话映射了web上,超市结账台就是服务器端,而你自己就是客户端,你身上所带的卡也就是存在客户端中的cookie文件,里面记录了你的帐号密码等信息。
不过要注意的一点,cookie在第二次使用的时候才能够生效,也就是说你在超市第一次买东西,人家会给你办卡,你以后来买就可以刷卡了,但是第一次买之前,超市并没有你的任何信息,所以你第一次根本就没有卡。网站也一样,第一次登录某网站,当然要输入帐号密码等信息,然后才能生成cookie存在本地,以便下一次使用。
同时,cookie也有自己的有效期,过了期以后就失效了,本地的cookie文件会被自动删除。需要再次登录,输入帐号密码,然后生成新的cookie。这样做的主要目的还是为了安全考虑。
2.cookie机制图解。
3.cookie使用方法。
(1)设置cookie
bool setcookie ( string $name,$value,$expire,$path,$domain,$secure,$httponly
setcookie("username","user",0,"/"); setcookie("username","user",time()+60*60,"/");
每个参数的用法就不作说明了。这里重点解析一下上面两中设置cookie方式中的时间和路径。
第一个当中的时间放了个0进去,难道代表生存时间为0.明显不可能,它有着特殊的意义,表示cookie的有效期随着浏览器的关闭而结束。他们的路径中都放了个"/"。这个就代表在这个域名下的所有contentpath都可以访问cookie,也就是说这个网站下的所有页面都可以追踪这个cookie。
(2)删除cookie
setcookie("username","",time()-3600,"/");
(3)查看cookie
print_r($_COOKIE);
----------------------------------------------------------------------------------
-----------------------------我是分割线-------------------------------------------
----------------------------------------------------------------------------------
1.session是什么?
Session是指一个终端用户与交互系统进行通信的时间间隔,通常指从注册进入系统到注销退出系统之间所经过的时间。
session的工作原理(摘于百度) (1)当一个session第一次被启用时,一个唯一的标识被存储于本地的cookie中。 (2)首先使用session_start()函数,PHP从session仓库中加载已经存储的session变量。 (3)当执行PHP脚本时,通过使用session_register()函数注册session变量。 (4)当PHP脚本执行结束时,未被销毁的session变量会被自动保存在本地一定路径下的session库中,这个路径可以通过php.ini文件中的session.save_path指定,下次浏览网页时可以加载使用。
其实通俗来讲的话,就是你去超市买东西,办的会员卡记录了你的信息,但是会员卡并不是保存在你这里,而是已数据的方式存在超市的系统中,一旦注册之后可以直接使用。你需要的时候,直接可以使用。但是你一旦离开超市,那个会员卡也就失去了效用直到你的下一次购买。同时,这个会员卡的唯一标识也就是你自己,其他任何人都没有办法使用你的会员卡。直接对号入座就很好理解了。
session和cookie的一大不同点就是,session注册之后直接使用,也就是第一次购买就可以使用,而cookie是经过第一次购买之后才将信息存入会员卡,然后第二次开始使用。
2.session机制图解。
3.session使用方法。
(1)设置session
session_start();
$_SESSION['username']="user";
每一次在使用session之前都需要进行开启session,就当是通常进门都先需要开门一样。而在设置session时和对变量进行赋值没有多大的区别,其实$_SESSION本身就是一个变量。
(2)删除session
这个相对步骤就多了点,而不是cookie里面一句话搞定。
//开启session session_start(); //注销session session_unset(); //销毁session session_destroy(); //同时销毁本地cookie中的sessionid setcookie(session_name(),"",time()-3600,"/");
print_r($_SESSION);
1.cookie与session优缺点。
cookie本身是存放在客户端中,仅占用几kb的内存大小。每次登录网站的时候都会带上本地的cookie进行验证,省去了麻烦的重复输入。但是安全性不是很高,毕竟是存放在本地的文件,虽然都是进行加密了的,一旦电脑数据被盗取,cookie就很有可能会被获取。
session存放在服务器中,占中内存虽小,但是用户基数够大的情况下,会对服务器造成很大的负荷。但是,数据放在服务器上,总归风险降低了许多。虽说没有不透风的墙,不过风也是可以很小很小的,这比喻。。。有同学可能疑问,session使用时,会有sessionid存在本地,一旦获取能否登录。答案当然是否定的,因为每次的id都是不一样的。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Écrit ci-dessus & La compréhension personnelle de l'auteur est que la reconstruction 3D basée sur l'image est une tâche difficile qui implique de déduire la forme 3D d'un objet ou d'une scène à partir d'un ensemble d'images d'entrée. Les méthodes basées sur l’apprentissage ont attiré l’attention pour leur capacité à estimer directement des formes 3D. Cet article de synthèse se concentre sur les techniques de reconstruction 3D de pointe, notamment la génération de nouvelles vues inédites. Un aperçu des développements récents dans les méthodes d'éclaboussure gaussienne est fourni, y compris les types d'entrée, les structures de modèle, les représentations de sortie et les stratégies de formation. Les défis non résolus et les orientations futures sont également discutés. Compte tenu des progrès rapides dans ce domaine et des nombreuses opportunités d’améliorer les méthodes de reconstruction 3D, un examen approfondi de l’algorithme semble crucial. Par conséquent, cette étude fournit un aperçu complet des progrès récents en matière de diffusion gaussienne. (Faites glisser votre pouce vers le haut
