基于MySQL到MongoDB简易对照表的详解_PHP教程
查询:
MySQL:
SELECT * FROM user
Mongo:
db.user.find()
MySQL:
SELECT * FROM user WHERE name = 'starlee'
Mongo:
db.user.find({‘name' : 'starlee'})
插入:
MySQL:
INSERT INOT user (`name`, `age`) values ('starlee',25)
Mongo:
db.user.insert({‘name' : 'starlee', ‘age' : 25})
如果你想在MySQL里添加一个字段,你必须:
ALTER TABLE user….
但在MongoDB里你只需要:
db.user.insert({‘name' : 'starlee', ‘age' : 25, ‘email' : 'starlee@starlee.com'})
删除:
MySQL:
DELETE * FROM user
Mongo:
db.user.remove({})
MySQL:
DELETE FROM user WHERE age Mongo:
db.user.remove({‘age' : {$lt : 30}})
$gt : > ; $gte : >= ; $lt : 更新:
MySQL:
UPDATE user SET `age` = 36 WHERE `name` = 'starlee'
Mongo:
db.user.update({‘name' : 'starlee'}, {$set : {‘age' : 36}})
MySQL:
UPDATE user SET `age` = `age` + 3 WHERE `name` = 'starlee'
Mongo:
db.user.update({‘name' : 'starlee'}, {$inc : {‘age' : 3}})
MySQL:
SELECT COUNT(*) FROM user WHERE `name` = 'starlee'
Mongo:
db.user.find({‘name' : 'starlee'}).count()
MySQL:
SELECT * FROM user limit 10,20
Mongo:
db.user.find().skip(10).limit(20)
MySQL:
SELECT * FROM user WHERE `age` IN (25, 35,45)
Mongo:
db.user.find({‘age' : {$in : [25, 35, 45]}})
MySQL:
SELECT * FROM user ORDER BY age DESC
Mongo:
db.user.find().sort({‘age' : -1})
MySQL:
SELECT DISTINCT(name) FROM user WHERE age > 20
Mongo:
db.user.distinct(‘name', {‘age': {$lt : 20}})
MySQL:
SELECT name, sum(marks) FROM user GROUP BY name
Mongo:
db.user.group({
key : {‘name' : true},
cond: {‘name' : ‘foo'},
reduce: function(obj,prev) { prev.msum += obj.marks; },
initial: {msum : 0}
});
MySQL:
SELECT name FROM user WHERE age Mongo:
db.user.find(‘this.age 发现很多人在搜MongoDB循环插入数据,下面把MongoDB循环插入数据的方法添加在下面:
for(var i=0;i上面一次性插入一百条数据,大概结构如下:
{ “_id” : ObjectId(“4c876e519e86023a30dde6b8″), “uid” : 55, “uname” : “nosqlfan55″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6b9″), “uid” : 56, “uname” : “nosqlfan56″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6ba”), “uid” : 57, “uname” : “nosqlfan57″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bb”), “uid” : 58, “uname” : “nosqlfan58″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bc”), “uid” : 59, “uname” : “nosqlfan59″ }
{ “_id” : ObjectId(“4c876e519e86023a30dde6bd”), “uid” : 60, “uname” : “nosqlfan60″ }
简易对照表
SQL Statement Mongo Query Language Statement
CREATE TABLE USERS (a Number, b Number) implicit; can be done explicitly
INSERT INTO USERS VALUES(1,1) db.users.insert({a:1,b:1})
SELECT a,b FROM users db.users.find({}, {a:1,b:1})
SELECT * FROM users db.users.find()
SELECT * FROM users WHERE age=33 db.users.find({age:33})
SELECT a,b FROM users WHERE age=33 db.users.find({age:33}, {a:1,b:1})
SELECT * FROM users WHERE age=33 ORDER BY name db.users.find({age:33}).sort({name:1})
SELECT * FROM users WHERE age>33 db.users.find({'age':{$gt:33}})})
SELECT * FROM users WHERE ageSELECT * FROM users WHERE name LIKE "%Joe%" db.users.find({name:/Joe/})
SELECT * FROM users WHERE name LIKE "Joe%" db.users.find({name:/^Joe/})
SELECT * FROM users WHERE age>33 AND ageSELECT * FROM users ORDER BY name DESC db.users.find().sort({name:-1})
CREATE INDEX myindexname ON users(name) db.users.ensureIndex({name:1})
CREATE INDEX myindexname ON users(name,ts DESC) db.users.ensureIndex({name:1,ts:-1})
SELECT * FROM users WHERE a=1 and b='q' db.users.find({a:1,b:'q'})
SELECT * FROM users LIMIT 10 SKIP 20 db.users.find().limit(10).skip(20)
SELECT * FROM users WHERE a=1 or b=2 db.users.find( { $or : [ { a : 1 } , { b : 2 } ] } )
SELECT * FROM users LIMIT 1 db.users.findOne()
EXPLAIN SELECT * FROM users WHERE z=3 db.users.find({z:3}).explain()
SELECT DISTINCT last_name FROM users db.users.distinct('last_name')
SELECT COUNT(*y) FROM users db.users.count()
SELECT COUNT(*y) FROM users where AGE > 30 db.users.find({age: {'$gt': 30}}).count()
SELECT COUNT(AGE) from users db.users.find({age: {'$exists': true}}).count()
UPDATE users SET a=1 WHERE b='q' db.users.update({b:'q'}, {$set:{a:1}}, false, true)
UPDATE users SET a=a+2 WHERE b='q' db.users.update({b:'q'}, {$inc:{a:2}}, false, true)
DELETE FROM users WHERE z="abc" db.users.remove({z:'abc'});
###################################################
一、操作符
操作符相信大家肯定都知道了,就是等于、大于、小于、不等于、大于等于、小于等于,但是在mongodb里不能直接使用这些操作符。在mongodb里的操作符是这样表示的:
(1) $gt > (大于)
(2) $lt (3) $gte >= (大于等于)
(4) $lt (5) $ne != (不等于)
(6) $in in (包含)
(7) $nin not in (不包含)
(8) $exists exist (字段是否存在)
(9) $inc 对一个数字字段field增加value
(10) $set 就是相当于sql的set field = value
(11) $unset 就是删除字段
(12) $push 把value追加到field里面去,field一定要是数组类型才行,如果field不存在,会新增一个数组类型加进去
(13) $pushAll 同$push,只是一次可以追加多个值到一个数组字段内
(14) $addToSet 增加一个值到数组内,而且只有当这个值不在数组内才增加。
(15) $pop 删除最后一个值:{ $pop : { field : 1 } }删除第一个值:{ $pop : { field : -1 } }注意,只能删除一个值,也就是说只能用1或-1,而不能用2或-2来删除两条。mongodb 1.1及以后的版本才可以用
(16) $pull 从数组field内删除一个等于value值
(17) $pullAll 同$pull,可以一次删除数组内的多个值
(18) $ 操作符 是他自己的意思,代表按条件找出的数组里面某项他自己。这个比较坳口,就不说了。
二、CURD 增、改、读、删
增加
db.collection->insert({'name' => 'caleng', 'email' => 'admin#admin.com'});
是不是灰常简单呀,对就是这么简单,它没有字段的限制,你可以随意起名,并插入数据
db.collection.update( { "count" : { $gt : 1 } } , { $set : { "test2" : "OK"} } ); 只更新了第一条大于1记录
db.collection.update( { "count" : { $gt : 3 } } , { $set : { "test2" : "OK"} },false,true ); 大于3的记录 全更新了
db.collection.update( { "count" : { $gt : 4 } } , { $set : { "test5" : "OK"} },true,false ); 大于4的记录 只加进去了第一条
db.collection.update( { "count" : { $gt : 5 } } , { $set : { "test5" : "OK"} },true,true ); 大于5的记录 全加进去
查询
db.collection.find(array('name' => 'bailing'), array('email'=>'email@qq.com'))
db.collection.findOne(array('name' => 'bailing'), array('email''email@qq.com'))
大家可以看到查询我用了两种不同的写法,这是为什么,其实这跟做菜是一样的,放不同的调料,炒出的菜是不同的味道。下面给大家说一下,这两种调料的不同作用。
findOne()只返回一个文档对象,find()返回一个集合列表。
也就是说比如,我们只想查某一条特定数据的详细信息的话,我们就可以用findOne();
如果想查询某一组信息,比如说一个新闻列表的时候,我们就可以作用find();
那么我想大家这时一定会想到我想对这一个列表排序呢,no problem mongodb会为您全心全意服务
db.collection.find().sort({age:1}); //按照age正序排列
db.collection.find().sort({age:-1}); //按照age倒序排列
db.collection.count(); //得到数据总数
db.collection.limit(1); //取数据的开始位置
db.collection.skip(10); //取数据的结束位置
//这样我们就实现了一个取10条数据,并排序的操作。
删除
删除有两个操作 remove()和drop()
db.collection.remove({"name",'jerry'}) //删除特定数据
db.collection.drop() //删除集合内的所有数据
distinct操作
db.user.distinct('name', {'age': {$lt : 20}})
2. 熟悉MongoDB的数据操作语句,类sql
数据库操作语法
mongo --path
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost) 从目标服务器克隆一个数据库
db.commandHelp(name) returns the help for the command
db.copyDatabase(fromdb,todb,fromhost) 复制数据库fromdb---源数据库名称,todb---目标数据库名称,fromhost---源数据库服务器地址
db.createCollection(name,{size:3333,capped:333,max:88888}) 创建一个数据集,相当于一个表
db.currentOp() 取消当前库的当前操作
db.dropDataBase() 删除当前数据库
db.eval(func,args) run code server-side
db.getCollection(cname) 取得一个数据集合,同用法:db['cname'] or db.cname
db.getCollenctionNames() 取得所有数据集合的名称列表
db.getLastError() 返回最后一个错误的提示消息
db.getLastErrorObj() 返回最后一个错误的对象
db.getMongo() 取得当前服务器的连接对象get the server connection object
db.getMondo().setSlaveOk() allow this connection to read from then nonmaster membr of a replica pair
db.getName() 返回当操作数据库的名称
db.getPrevError() 返回上一个错误对象
db.getProfilingLevel() ?什么等级
db.getReplicationInfo() ?什么信息
db.getSisterDB(name) get the db at the same server as this onew
db.killOp() 停止(杀死)在当前库的当前操作
db.printCollectionStats() 返回当前库的数据集状态
db.printReplicationInfo()
db.printSlaveReplicationInfo()
db.printShardingStatus() 返回当前数据库是否为共享数据库
db.removeUser(username) 删除用户
db.repairDatabase() 修复当前数据库
db.resetError()
db.runCommand(cmdObj) run a database command. if cmdObj is a string, turns it into {cmdObj:1}
db.setProfilingLevel(level) 0=off,1=slow,2=all
db.shutdownServer() 关闭当前服务程序
db.version() 返回当前程序的版本信息
数据集(表)操作语法
db.linlin.find({id:10}) 返回linlin数据集ID=10的数据集
db.linlin.find({id:10}).count() 返回linlin数据集ID=10的数据总数
db.linlin.find({id:10}).limit(2) 返回linlin数据集ID=10的数据集从第二条开始的数据集
db.linlin.find({id:10}).skip(8) 返回linlin数据集ID=10的数据集从0到第八条的数据集
db.linlin.find({id:10}).limit(2).skip(8) 返回linlin数据集ID=1=的数据集从第二条到第八条的数据
db.linlin.find({id:10}).sort() 返回linlin数据集ID=10的排序数据集
db.linlin.findOne([query]) 返回符合条件的一条数据
db.linlin.getDB() 返回此数据集所属的数据库名称
db.linlin.getIndexes() 返回些数据集的索引信息
db.linlin.group({key:...,initial:...,reduce:...[,cond:...]})
db.linlin.mapReduce(mayFunction,reduceFunction,
db.linlin.remove(query) 在数据集中删除一条数据
db.linlin.renameCollection(newName) 重命名些数据集名称
db.linlin.save(obj) 往数据集中插入一条数据
db.linlin.stats() 返回此数据集的状态
db.linlin.storageSize() 返回此数据集的存储大小
db.linlin.totalIndexSize() 返回此数据集的索引文件大小
db.linlin.totalSize() 返回些数据集的总大小
db.linlin.update(query,object[,upsert_bool]) 在此数据集中更新一条数据
db.linlin.validate() 验证此数据集
db.linlin.getShardVersion() 返回数据集共享版本号

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

Simplification de l'intégration des données: AmazonrDSMysQL et l'intégration Zero ETL de Redshift, l'intégration des données est au cœur d'une organisation basée sur les données. Les processus traditionnels ETL (extrait, converti, charge) sont complexes et prennent du temps, en particulier lors de l'intégration de bases de données (telles que AmazonrDSMysQL) avec des entrepôts de données (tels que Redshift). Cependant, AWS fournit des solutions d'intégration ETL Zero qui ont complètement changé cette situation, fournissant une solution simplifiée et à temps proche pour la migration des données de RDSMySQL à Redshift. Cet article plongera dans l'intégration RDSMYSQL ZERO ETL avec Redshift, expliquant comment il fonctionne et les avantages qu'il apporte aux ingénieurs de données et aux développeurs.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

1. Utilisez l'index correct pour accélérer la récupération des données en réduisant la quantité de données numérisées SELECT * FROMMLOYEESEESHWHERELAST_NAME = 'SMITH'; Si vous recherchez plusieurs fois une colonne d'une table, créez un index pour cette colonne. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

Pour remplir le nom d'utilisateur et le mot de passe MySQL: 1. Déterminez le nom d'utilisateur et le mot de passe; 2. Connectez-vous à la base de données; 3. Utilisez le nom d'utilisateur et le mot de passe pour exécuter des requêtes et des commandes.

Une explication détaillée des attributs d'acide de base de données Les attributs acides sont un ensemble de règles pour garantir la fiabilité et la cohérence des transactions de base de données. Ils définissent comment les systèmes de bases de données gérent les transactions et garantissent l'intégrité et la précision des données même en cas de plantages système, d'interruptions d'alimentation ou de plusieurs utilisateurs d'accès simultanément. Présentation de l'attribut acide Atomicité: une transaction est considérée comme une unité indivisible. Toute pièce échoue, la transaction entière est reculée et la base de données ne conserve aucune modification. Par exemple, si un transfert bancaire est déduit d'un compte mais pas augmenté à un autre, toute l'opération est révoquée. BeginTransaction; UpdateAccountSsetBalance = Balance-100Wh

MySQL convient aux débutants car il est simple à installer, puissant et facile à gérer les données. 1. Installation et configuration simples, adaptées à une variété de systèmes d'exploitation. 2. Prise en charge des opérations de base telles que la création de bases de données et de tables, d'insertion, d'interrogation, de mise à jour et de suppression de données. 3. Fournir des fonctions avancées telles que les opérations de jointure et les sous-questionnaires. 4. Les performances peuvent être améliorées par l'indexation, l'optimisation des requêtes et le partitionnement de la table. 5. Prise en charge des mesures de sauvegarde, de récupération et de sécurité pour garantir la sécurité et la cohérence des données.
