详解Python中的array数组模块相关使用
初始化
array实例化可以提供一个参数来描述允许那种数据类型,还可以有一个初始的数据序列存储在数组中。
import array import binascii s = 'This is the array.' a = array.array('c', s) print 'As string:', s print 'As array :', a print 'As hex :', binascii.hexlify(a)
数组配置为包含一个字节序列,用一个简单的字符串初始化。
>>> ================================ RESTART ================================ >>> As string: This is the array. As array : array('c', 'This is the array.') As hex : 54686973206973207468652061727261792e
处理数组
类似于其他python序列,可以采用同样方式扩展和处理array。
import array import pprint a = array.array('i', xrange(3)) print 'Initial :', a a.extend(xrange(3)) print 'Extended:', a print 'slice: :', a[2:5] print 'Itetator:' print list(enumerate(a))
支持的操作包括分片,迭代以及向末尾增加元素。
>>> ================================ RESTART ================================ >>> Initial : array('i', [0, 1, 2]) Extended: array('i', [0, 1, 2, 0, 1, 2]) slice: : array('i', [2, 0, 1]) Itetator: [(0, 0), (1, 1), (2, 2), (3, 0), (4, 1), (5, 2)]
数组和文件
可以使用高效读/写文件的专用内置方法将数组的内容写入文件或从文件读取数组。
import array import binascii import tempfile a = array.array('i', xrange(5)) print 'A1: ',a output = tempfile.NamedTemporaryFile() a.tofile(output.file) output.flush with open(output.name, 'rb') as input: raw_input = input.read() print 'Raw Contents:', binascii.hexlify(raw_data) input.seek(0) a2 = array.array('i') a2.fromfile(input, len(a)) print 'A2: ', a2
候选字节顺序
如果数组中的数据没有采用固有的字节顺序,或者在发送到一个采用不同字节顺序的系统前需要交换顺序,可以在python转换整个数组而无须迭代处理每个元素。
import array import binascii def to_hex(a): chars_per_item = a.itemsize * 2 hex_version = binascii.hexlify(a) num_chunks = len(hex_version) / chars_per_item for i in xrange(num_chunks): start = i * chars_per_item end = start + chars_per_item yield hex_version[start:end] a1 = array.array('i', xrange(5)) a2 = array.array('i', xrange(5)) a2.byteswap() fmt = '%10s %10s %10s %10s' print fmt % ('A1_hex', 'A1', 'A2_hex', 'A2') print fmt % (('-' * 10,) * 4) for value in zip(to_hex(a1), a1, to_hex(a2), a2): print fmt % value
byteswap()会交换C数组中元素的字节顺序,比在python中循环处理数据高效的多。
>>> ================================ RESTART ================================ >>> A1_hex A1 A2_hex A2 ---------- ---------- ---------- ---------- 00000000 0 00000000 0 01000000 1 00000001 16777216 02000000 2 00000002 33554432 03000000 3 00000003 50331648 04000000 4 00000004 67108864

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
