25个Java机器学习工具和库
25个Java机器学习工具和库
IT 行业越来越火,随着更多的生力军加入IT的大家庭,Java所占的比重也越来越大,下面为大家整理了一些学习工具。
1. Weka集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处理、分类、回归、聚类、关联规则以及可视化。
2.Massive Online Analysis(MOA)是一个面向数据流挖掘的流行开源框架,有着非常活跃的成长社区。它包括一系列的机器学习算法(分类、回归、聚类、异常检测、概念漂移检测和推荐系统)和评估工具。关联了WEKA项目,MOA也是用Java编写的,其扩展性更强。
3.MEKA项目提供了一个面向多标签学习和评价方法的开源实现。在多标签分类中,我们要预测每个输入实例的多个输出变量。这与“普通”情况下只涉及一个单一目标变量的情形不同。此外,MEKA基于WEKA的机器学习工具包。
4. Advanced Data mining And Machine learning System(ADAMS)是一种新型的柔性工作流引擎,旨在迅速建立并保持真实世界的复杂知识流,它是基于GPLv3发行的。
5. Environment for Developing KDD-Applications Supported by Index-Structure(ELKI)是一款基于Java的开源(AGPLv3)数据挖掘软件。ELKI主要集中于算法研究,重点研究聚类分析中的无监督方法和异常检测。
6. Mallet是一个基于Java的面向文本文件的机器学习工具包。Mallet支持分类算法,如最大熵、朴素贝叶斯和决策树分类。
7. Encog是一个先进的机器学习框架,集成了支持向量机(SVM)、人工神经网络、遗传算法、贝叶斯网络、隐马尔可夫模型(HMM)、遗传编程和遗传算法。
8. Datumbox机器学习框架是一个用Java编写的开源框架,允许快速地开发机器学习和统计应用。该框架的核心重点包括大量的机器学习算法以及统计测试,能够处理中等规模的数据集。
9. Deeplearning4j是使用Java和Scala编写的第一个商业级的、开源的、分布式深入学习库。其设计的目的是用于商业环境中,而不是作为一个研究工具。
10. Mahout是一个内置算法的机器学习框架。Mahout-Samsara帮助人们创建他们自己的数学,并提供了一些现成的算法实现。
11.Rapid Miner是德国多特蒙特技术大学开发的。它为开发者开发应用程序提供了一个GUI(图形用户界面)和Java API。它还提供了一些机器学习算法,用来做数据处理、可视化以及建模。
12. Apache SAMOA是一个机器学习(ML)框架,内嵌面向分布式流ML算法的编程抽象,并且允许在没有直接处理底层分布式流处理引擎(DSPEe,如Apache Storm、Apache S4和Apache samza)复杂性的情况下,开发新的ML算法。用户可以开发分布式流ML算法,而且可以在多个DSPEs上执行。
13. Neuroph通过提供支持创建、训练和保存神经网络的Java网络库和GUI工具,简化了神经网络开发。
14. Oryx 2是一个建立在Apache Spark和Apache Kafka的Lambda架构实现,但随着实时大规模机器学习而逐渐开始专业化。这是一个用于构建应用程序的框架,但也包括打包,以及面向协同过滤、分类、回归和聚类的端到端的应用程序。
15. Stanford Classifier是一个机器学习工具,它可以将数据项归置到一个类别。一个概率分类器,比如这个,它可以对一个数据项给出类分配的概率分布。该软件是最大熵分类器的一个Java实现。
16.io是一个Retina API,有着快速精确的类似大脑的自然语言处理算法。
17.JSAT是一个快速入门的机器学习库。该库是我在业余时间开发的,基于GPL3发行的。库中的一部分内容可自主学习,例如所有的代码都是独立的。JSAT没有外部依赖,而且是纯Java编写的。
18. N-Dimensional Arrays for Java(ND4J)是一个用于JVM的科学计算库。它们是用来在生产环境中使用的,这表明例程的设计是以最小的内存需求来运行的。
19. Java Machine Learning Library(Java机器学习库)是一系列机器学习算法的相关实现。这些算法,无论是源代码还是文档,都编写的很出色。其主要语言是Java。
20. Java-ML是一个使用Java编写的一系列机器学习算法的Java API。它只提供了一个标准的算法接口。
21. MLlib (Spark)是Apache Spark的可扩展机器学习库。虽然是Java,但该库与平台还支持Java,Scala和Python绑定。此库是最新的,并且算法很多。
22. H2O是用于智能应用的机器学习API。它在大数据上对统计学、机器学习和数学进行了规模化。H2O可扩展,开发者可以在核心部分使用简单的数学知识。
23. WalnutiQ是人脑部分面向对象模型,有着理论常用的学习算法(正在向简单强烈的情感人工智能模型方向研究)。
24. RankLib是一个排名学习算法库。目前已经实现八种流行的算法。
25. htm.java(基于Java的Hierarchical Temporal Memory算法实现)是一个面向智能计算的Numenta平台的Java接口。
上面是目前所用的比较多的Java的学习工具了,大家如果发现了比这更加实用的或者其他的编程语言如PHP的工具,也可以一起讨论啊。
兄弟会高洛峰免费收徒:http://www.hdb.com/party/lzcw-comm.html
免费领取LAMP兄弟连原创PHP视频教程光盘/《细说PHP》精要版,详情咨询官网客服:
http://www.lampbrother.net
以上就介绍了25个Java机器学习工具和库,包括了方面的内容,希望对PHP教程有兴趣的朋友有所帮助。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'exécution du projet H5 nécessite les étapes suivantes: Installation des outils nécessaires tels que le serveur Web, Node.js, les outils de développement, etc. Créez un environnement de développement, créez des dossiers de projet, initialisez les projets et écrivez du code. Démarrez le serveur de développement et exécutez la commande à l'aide de la ligne de commande. Aperçu du projet dans votre navigateur et entrez l'URL du serveur de développement. Publier des projets, optimiser le code, déployer des projets et configurer la configuration du serveur Web.

Il existe deux façons d'exporter XML vers PDF: en utilisant XSLT et en utilisant des bibliothèques de liaison de données XML. XSLT: Créez une feuille de style XSLT, spécifiez le format PDF pour convertir les données XML à l'aide du processeur XSLT. Bibliothèque de liaison de données XML: Importez la bibliothèque de liaison de données XML Créer des fichiers PDF PDF Document Chargement des fichiers PDF d'exportation de données XML. Quelle méthode est la meilleure pour les fichiers PDF dépend des exigences. XSLT offre une flexibilité, tandis que la bibliothèque de liaison des données est simple à implémenter; Pour les conversions simples, la bibliothèque de liaison des données est meilleure et pour les conversions complexes, XSLT est plus approprié.

Debianlinux est connu pour sa stabilité et sa sécurité et est largement utilisé dans les environnements de serveur, de développement et de bureau. Bien qu'il y ait actuellement un manque d'instructions officielles sur la compatibilité directe avec Debian et Hadoop, cet article vous guidera sur la façon de déployer Hadoop sur votre système Debian. Exigences du système Debian: Avant de commencer la configuration de Hadoop, assurez-vous que votre système Debian répond aux exigences de fonctionnement minimales de Hadoop, qui comprend l'installation de l'environnement d'exécution Java (JRE) nécessaire et des packages Hadoop. Étapes de déploiement de Hadoop: Télécharger et unzip Hadoop: Téléchargez la version Hadoop dont vous avez besoin sur le site officiel d'Apachehadoop et résolvez-le

Les erreurs Apache peuvent être diagnostiquées et résolues en affichant des fichiers journaux. 1) Affichez le fichier error.log, 2) Utilisez la commande grep pour filtrer les erreurs dans des noms de domaine spécifiques, 3) Nettoyez régulièrement les fichiers journaux et optimisez la configuration, 4) Utilisez des outils de surveillance pour surveiller et alerter en temps réel. Grâce à ces étapes, les erreurs Apache peuvent être diagnostiquées et résolues efficacement.

"Debianstrings" n'est pas un terme standard, et sa signification spécifique n'est pas encore claire. Cet article ne peut pas commenter directement la compatibilité de son navigateur. Cependant, si "DebianStrings" fait référence à une application Web exécutée sur un système Debian, sa compatibilité du navigateur dépend de l'architecture technique de l'application elle-même. La plupart des applications Web modernes se sont engagées à compatibilité entre les navigateurs. Cela repose sur les normes Web suivantes et l'utilisation de technologies frontales bien compatibles (telles que HTML, CSS, JavaScript) et les technologies back-end (telles que PHP, Python, Node.js, etc.). Pour s'assurer que l'application est compatible avec plusieurs navigateurs, les développeurs doivent souvent effectuer des tests croisés et utiliser la réactivité

Les fichiers journaux du système Debian sont des ressources précieuses pour les administrateurs système et les développeurs pour diagnostiquer les problèmes et surveiller l'état de fonctionnement du système. Cet article se concentrera sur certaines informations de journal clés qui ne peuvent pas être ignorées. Journaux système de base (généralement situés dans / var / log / syslog ou / var / log / messages) Ces journaux enregistrent les activités de base du système, y compris: démarrage du système et événements d'arrêt: version du noyau de journal, résultats de détection matérielle, etc., pour aider à suivre les défaillances de démarrage ou les exceptions d'arrêt. Alertes de défaillance matérielle: telles que les erreurs de disque, les problèmes de mémoire, etc., pour détecter rapidement des problèmes matériels potentiels. Modifications de l'état du service: enregistrez les événements de démarrage, d'arrêt et de redémarrage du service pour faciliter la surveillance de la santé du service. Historique de connexion / déconnexion de l'utilisateur:

Il existe les moyens suivants de générer un fichier pom.xml: utilisez Maven Archetype pour fournir des modèles de projet prédéfinis pour générer automatiquement des fichiers pom.xml pour des types de projets spécifiques. Utilisez le plugin Maven Helper pour fournir des commandes pour générer des fichiers pom.xml. Créez manuellement pour personnaliser le fichier pom.xml pour le projet.

Les systèmes Debian sont connus pour leur stabilité et leur sécurité, mais l'optimisation des performances a encore besoin d'attention. Cet article présente certaines méthodes d'optimisation des performances du système Debian couramment utilisées. Il n'utilise pas directement "DebianMessage" (peut-être se référer aux journaux système) pour l'optimisation, mais améliore l'efficacité en surveillant et en ajustant les ressources système. Outil de surveillance des performances Les outils suivants peuvent vous aider à surveiller l'utilisation des ressources système en temps réel: TOP: Afficher les informations du processus en temps réel, y compris le processeur et l'utilisation de la mémoire. HTOP: (si disponible) Visionneuse de processus interactive, plus intuitive que le haut. VMSTAT: affiche des informations de mémoire virtuelle, de disque, de processeur et de processus. IOSTAT: Afficher les statistiques des E / S disque, telles que la lecture et la vitesse d'écriture
