Maison développement back-end Tutoriel Python 一种比较省内存的稀疏矩阵Python存储方案

一种比较省内存的稀疏矩阵Python存储方案

Oct 18, 2016 am 09:54 AM

推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用:1、不能很好的同时支持data[i, ...]、data[..., j]、data[i, j]快速切片;2、由于数据保存在内存中,不能很好的支持海量数据处理。

要支持data[i, ...]、data[..., j]的快速切片,需要i或者j的数据集中存储;同时,为了保存海量的数据,也需要把数据的一部分放在硬盘上,用内存做buffer。这里的解决方案比较简单,用一个类Dict的东西来存储数据,对于某个i(比如9527),它的数据保存在dict['i9527']里面,同样的,对于某个j(比如3306),它的全部数据保存在dict['j3306']里面,需要取出data[9527, ...]的时候,只要取出dict['i9527']即可,dict['i9527']原本是一个dict对象,储存某个j对应的值,为了节省内存空间,我们把这个dict以二进制字符串形式存储,直接上代码:

'''
Sparse Matrix
'''
import struct
import numpy as np
import bsddb
from cStringIO import StringIO
  
class DictMatrix():
    def __init__(self, container = {}, dft = 0.0):
        self._data  = container
        self._dft   = dft
        self._nums  = 0
  
    def __setitem__(self, index, value):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
  
        ik = ('i%d' % i)
        # 为了节省内存,我们把j, value打包成字二进制字符串
        ib = struct.pack('if', j, value)
        jk = ('j%d' % j)
        jb = struct.pack('if', i, value)
  
        try:
            self._data[ik] += ib
        except:
            self._data[ik] = ib
        try:
            self._data[jk] += jb
        except:
            self._data[jk] = jb
        self._nums += 1
  
    def __getitem__(self, index):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
  
        if (isinstance(i, int)):
            ik = ('i%d' % i)
            if not self._data.has_key(ik): return self._dft
            ret = dict(np.fromstring(self._data[ik], dtype = 'i4,f4'))
            if (isinstance(j, int)): return ret.get(j, self._dft)
  
        if (isinstance(j, int)):
            jk = ('j%d' % j)
            if not self._data.has_key(jk): return self._dft
            ret = dict(np.fromstring(self._data[jk], dtype = 'i4,f4'))
  
        return ret
  
    def __len__(self):
        return self._nums
  
    def __iter__(self):
        pass
  
    '''
    从文件中生成matrix
    考虑到dbm读写的性能不如内存,我们做了一些缓存,每1000W次批量写入一次
    考虑到字符串拼接性能不太好,我们直接用StringIO来做拼接
    '''
    def from_file(self, fp, sep = 't'):
        cnt = 0
        cache = {}
        for l in fp:
            if 10000000 == cnt:
                self._flush(cache)
                cnt = 0
                cache = {}
            i, j, v = [float(i) for i in l.split(sep)]
  
            ik = ('i%d' % i)
            ib = struct.pack('if', j, v)
            jk = ('j%d' % j)
            jb = struct.pack('if', i, v)
  
            try:
                cache[ik].write(ib)
            except:
                cache[ik] = StringIO()
                cache[ik].write(ib)
  
            try:
                cache[jk].write(jb)
            except:
                cache[jk] = StringIO()
                cache[jk].write(jb)
  
            cnt += 1
            self._nums += 1
  
        self._flush(cache)
        return self._nums
  
    def _flush(self, cache):
        for k,v in cache.items():
            v.seek(0)
            s = v.read()
            try:
                self._data[k] += s
            except:
                self._data[k] = s
  
if __name__ == '__main__':
    db = bsddb.btopen(None, cachesize = 268435456)
    data = DictMatrix(db)
    data.from_file(open('/path/to/log.txt', 'r'), ',')
Copier après la connexion

测试4500W条rating数据(整形,整型,浮点格式),922MB文本文件导入,采用内存dict储存的话,12分钟构建完毕,消耗内存1.2G,采用示例代码中的bdb存储,20分钟构建完毕,占用内存300~400MB左右,比cachesize大不了多少,数据读取测试:

import timeit
timeit.Timer('foo = __main__.data[9527, ...]', 'import __main__').timeit(number = 1000)
Copier après la connexion

   

消耗1.4788秒,大概读取一条数据1.5ms。

采用类Dict来存储数据的另一个好处是你可以随便用内存Dict或者其他任何形式的DBM,甚至传说中的Tokyo Cabinet….

好的,码完收工。


Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Apr 01, 2025 pm 11:18 PM

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

See all articles