python 多继承详解

Oct 18, 2016 am 10:19 AM

class A(object):    # A must be new-style class
   def __init__(self):
    print "enter A"
    print "leave A"
  
class B(C):     # A --> C
   def __init__(self):
    print "enter B"
    super(B, self).__init__()
    print "leave B"
Copier après la connexion

在我们的印象中,对于super(B, self).__init__()是这样理解的:super(B, self)首先找到B的父类(就是类A),然后把类B的对象self转换为类A的对象,然后“被转换”的类A对象调用自己的__init__函数。

有一天某同事设计了一个相对复杂的类体系结构(我们先不要管这个类体系设计得是否合理,仅把这个例子作为一个题目来研究就好),代码如下

代码段4:

class A(object):
    def __init__(self):
        print "enter A"
        print "leave A"
  
class B(object):
    def __init__(self):
        print "enter B"
        print "leave B"
  
class C(A):
    def __init__(self):
        print "enter C"
        super(C, self).__init__()
        print "leave C"
  
class D(A):
    def __init__(self):
        print "enter D"
        super(D, self).__init__()
        print "leave D"
        class E(B, C):
        def __init__(self):
        print "enter E"
        B.__init__(self)
        C.__init__(self)
        print "leave E"
  
class F(E, D):
    def __init__(self):
        print "enter F"
        E.__init__(self)
        D.__init__(self)
        print "leave F"
Copier après la connexion

f = F() ,结果如下:

enter F enter E enter B leave B enter C enter D enter A leave A leave D leave C leave E enter D enter A leave A leave D leave F

明显地,类A和类D的初始化函数被重复调用了2次,这并不是我们所期望的结果!我们所期望的结果是最多只有类A的初始化函数被调用2次——其实这是多继承的类体系必须面对的问题。我们把代码段4的类体系画出来,如下图:

object
| \
| A
| / |
B C D
\ / |
E |
\ |
F

按我们对super的理解,从图中可以看出,在调用类C的初始化函数时,应该是调用类A的初始化函数,但事实上却调用了类D的初始化函数。好一个诡异的问题!

也就是说,mro中记录了一个类的所有基类的类类型序列。查看mro的记录,发觉包含7个元素,7个类名分别为:

F E B C D A object

  从而说明了为什么在C.__init__中使用super(C, self).__init__()会调用类D的初始化函数了。 ???

  我们把代码段4改写为:

代码段5:

class A(object):
    def __init__(self):
        print "enter A"
        super(A, self).__init__()  # new
        print "leave A"
  
class B(object):
    def __init__(self):
        print "enter B"
        super(B, self).__init__()  # new
        print "leave B"
  
class C(A):
    def __init__(self):
        print "enter C"
        super(C, self).__init__()
        print "leave C"
  
class D(A):
    def __init__(self):
        print "enter D"
        super(D, self).__init__()
        print "leave D"
        class E(B, C):
        def __init__(self):
        print "enter E"
        super(E, self).__init__()  # change
        print "leave E"
  
class F(E, D):
    def __init__(self):
        print "enter F"
        super(F, self).__init__()  # change
        print "leave F"
Copier après la connexion

f = F(),执行结果:

enter F enter E enter B enter C enter D enter A leave A leave D leave C leave B leave E leave F

可见,F的初始化不仅完成了所有的父类的调用,而且保证了每一个父类的初始化函数只调用一次。

小结

  1. super并不是一个函数,是一个类名,形如super(B, self)事实上调用了super类的初始化函数,
      产生了一个super对象;
  2. super类的初始化函数并没有做什么特殊的操作,只是简单记录了类类型和具体实例;
  3. super(B, self).func的调用并不是用于调用当前类的父类的func函数;
  4. Python的多继承类是通过mro的方式来保证各个父类的函数被逐一调用,而且保证每个父类函数
      只调用一次(如果每个类都使用super);
  5. 混用super类和非绑定的函数是一个危险行为,这可能导致应该调用的父类函数没有调用或者一
      个父类函数被调用多次。

一些更深入的问题:各位可以看到,print F.__mro__时发现里面元素的顺序是 F E B C D A object,这就是F的基类查找顺序,至于为什么是这样的顺序,以及python内置的多继承顺序是怎么实现的,这涉及到mro顺序的实现,python 2.3以后的版本中是采用的一个叫做C3的算法,在下篇博客中进行介绍。


Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte Mar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment utiliser la belle soupe pour analyser HTML? Comment utiliser la belle soupe pour analyser HTML? Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Filtrage d'image en python Filtrage d'image en python Mar 03, 2025 am 09:44 AM

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Comment travailler avec des documents PDF à l'aide de Python Comment travailler avec des documents PDF à l'aide de Python Mar 02, 2025 am 09:54 AM

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Comment se cacher en utilisant Redis dans les applications Django Comment se cacher en utilisant Redis dans les applications Django Mar 02, 2025 am 10:10 AM

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch? Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Comment implémenter votre propre structure de données dans Python Comment implémenter votre propre structure de données dans Python Mar 03, 2025 am 09:28 AM

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

Introduction à la programmation parallèle et simultanée dans Python Introduction à la programmation parallèle et simultanée dans Python Mar 03, 2025 am 10:32 AM

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

See all articles