使用 Python 计算 π 值

高洛峰
Libérer: 2016-10-18 10:44:09
original
5885 Les gens l'ont consulté

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。

1.png

你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自 Pi WikiPedia page并加以实现。让我们看看下面的代码:

importsys
importmath
   
defmain(argv):
   
    iflen(argv) !=1:
        sys.exit(&#39;Usage: calc_pi.py <n>&#39;)
   
    print&#39;\nComputing Pi v.01\n&#39;
       
    a=1.0
    b=1.0/math.sqrt(2)
    t=1.0/4.0
    p=1.0
           
    foriinrange(int(sys.argv[1])):
        at=(a+b)/2
        bt=math.sqrt(a*b)
        tt=t-p*(a-at)**2
        pt=2*p
           
        a=at;b=bt;t=tt;p=pt
           
    my_pi=(a+b)**2/(4*t)
    accuracy=100*(math.pi-my_pi)/my_pi
           
    print"Pi is approximately: "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if__name__=="__main__":
    main(sys.argv[1:])
Copier après la connexion

这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果:

  • 1.png

  • 你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :

  • 1.png

  • 看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 在坚果壳,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾号码开始时,它不会影响任何计算只要精度小于前面的垃圾号码(junk number)开始时。 您可以指定你想要多少位数的通过设置getcontext().prec 。我们试试。

很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。

importsys
importmath
fromdecimalimport*
   
defmain(argv):
   
    iflen(argv) !=1:
        sys.exit(&#39;Usage: calc_pi.py <n>&#39;)
   
    print&#39;\nComputing Pi v.01\n&#39;
       
    a=Decimal(1.0)
    b=Decimal(1.0/math.sqrt(2))
    t=Decimal(1.0)/Decimal(4.0)
    p=Decimal(1.0)
           
    foriinrange(int(sys.argv[1])):
        at=Decimal((a+b)/2)
        bt=Decimal(math.sqrt(a*b))
        tt=Decimal(t-p*(a-at)**2)
        pt=Decimal(2*p)
           
        a=at;b=bt;t=tt;p=pt
           
    my_pi=(a+b)**2/(4*t)
    accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
           
    print"Pi is approximately: "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if__name__=="__main__":
    main(sys.argv[1:])
Copier après la connexion

输出结果:

1.png

好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于 Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:

Bailey–Borwein–Plouffe 公式

Bellard的公式

Chudnovsky 算法

让我们从Bailey–Borwein–Plouffe 公式开始。它看起来是这个样子:

1.png

在代码中我们可以这样编写它:

import sys
import math
from decimal import *
   
def bbp(n):
    pi=Decimal(0)
    k=0
    while k < n:
        pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
        k+=1
    return pi
   
def main(argv):
   
        if len(argv) !=2:
        sys.exit(&#39;Usage: BaileyBorweinPlouffe.py <prec> <n>&#39;)
           
    getcontext().prec=(int(sys.argv[1]))
    my_pi=bbp(int(sys.argv[2]))
    accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
   
    print"Pi is approximately "+str(my_pi)
    print"Accuracy with math.pi: "+str(accuracy)
       
if __name__=="__main__":
    main(sys.argv[1:])
Copier après la connexion

抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:

1.png

这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样:

1.png

我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):

def bellard(n):
   pi=Decimal(0)
   k=0
   while k < n:
       pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
       k+=1
   pi=pi*1/(2**6)
   return pi
Copier après la connexion

输出结果:

1.png

哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:

1.png

再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。

下面是程序和输出结果:

def chudnovsky(n):
    pi=Decimal(0)
    k=0
    while k < n:
        pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
        k+=1
    pi=pi*Decimal(10005).sqrt()/4270934400
    pi=pi**(-1)
    return pi
Copier après la connexion

1.png

所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。


Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal