python操作SQL
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同
一、下载安装
pip3 install pymysql
二、操作使用
1、执行SQL
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql # 创建连接 conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 创建游标 cursor = conn.cursor() # 执行SQL,并返回收影响行数 effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数 #effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数 #effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据 conn.commit() # 关闭游标 cursor.close() # 关闭连接 conn.close()
2、获取新创建数据自增ID
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) conn.commit() cursor.close() conn.close() # 获取最新自增ID new_id = cursor.lastrowid
3、获取查询数据
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据 row_1 = cursor.fetchone() # 获取前n行数据 # row_2 = cursor.fetchmany(3) # 获取所有数据 # row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
cursor.scroll(1,mode='relative') # 相对当前位置移动
cursor.scroll(2,mode='absolute') # 相对绝对位置移动
4、fetch数据类型关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:
#!/usr/bin/env python # -*- coding:utf-8 -*- import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型 cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
SQLAlchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
安装:
pip3 install SQLAlchemy
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)" # ) # 新插入行自增ID # cur.lastrowid # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),] # ) # 执行SQL # cur = engine.execute( # "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)", # host='1.1.1.99', color_id=3 # ) # 执行SQL # cur = engine.execute('select * from hosts') # 获取第一行数据 # cur.fetchone() # 获取第n行数据 # cur.fetchmany(3) # 获取所有数据 # cur.fetchall()
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多 class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) 注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2、操作表
#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16)) __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), ) def __repr__(self): return "%s-%s" %(self.id, self.name) # 一对多 class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) def __repr__(self): return "%s-%s" %(self.nid, self.caption) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 与生成表结构无关,仅用于查询方便 favor = relationship("Favor", backref='pers') # 多对多 class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) group = relationship("Group", backref='s2g') server = relationship("Server", backref='s2g') class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) # group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
obj = Users(name="alex0", extra='sb') session.add(obj) session.add_all([ Users(name="alex1", extra='sb'), Users(name="alex2", extra='sb'), ]) session.commit()
session.query(Users).filter(Users.id > 2).delete() session.commit()
session.query(Users).filter(Users.id > 2).update({"name" : "099"}) session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") session.commit()
ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter_by(name='alex').first()
ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() # 通配符 ret = session.query(Users).filter(Users.name.like('e%')).all() ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制 ret = session.query(Users)[1:2] # 排序 ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组 from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合 q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
