win7环境scrapy输出错误日志报错解决方案
win7下调试scrapy代码时,出现代码报错,但是未输出到log日志,而是在cmd中报如下错误:
Traceback (most recent call last):
File "d:\python27\lib\logging\__init__.py", line 884, in emit
stream.write(fs % msg.encode("UTF-8"))
UnicodeDecodeError: 'gbk' codec can't decode bytes in position 1274-1275: illegal multibyte sequence
Logged from file scraper.py, line 158
各种尝试均告失败,后来在论坛中发现有人说这个bug在python3环境不存在,于是尝试升级python2.7的logging组件。
Shell代码
pip install --upgrade logging
升级logging后再无此报错出现。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Scrapy met en œuvre l'exploration d'articles et l'analyse des comptes publics WeChat. WeChat est une application de médias sociaux populaire ces dernières années, et les comptes publics qui y sont exploités jouent également un rôle très important. Comme nous le savons tous, les comptes publics WeChat sont un océan d’informations et de connaissances, car chaque compte public peut publier des articles, des messages graphiques et d’autres informations. Ces informations peuvent être largement utilisées dans de nombreux domaines, tels que les reportages médiatiques, la recherche universitaire, etc. Ainsi, cet article expliquera comment utiliser le framework Scrapy pour explorer et analyser les articles du compte public WeChat. Scr

Scrapy est un framework d'exploration Python open source qui peut obtenir rapidement et efficacement des données à partir de sites Web. Cependant, de nombreux sites Web utilisent la technologie de chargement asynchrone Ajax, ce qui empêche Scrapy d'obtenir directement des données. Cet article présentera la méthode d'implémentation de Scrapy basée sur le chargement asynchrone Ajax. 1. Principe de chargement asynchrone Ajax Chargement asynchrone Ajax : Dans la méthode de chargement de page traditionnelle, une fois que le navigateur a envoyé une requête au serveur, il doit attendre que le serveur renvoie une réponse et charge la page entière avant de passer à l'étape suivante.

Scrapy est un framework d'exploration basé sur Python qui peut obtenir rapidement et facilement des informations pertinentes sur Internet. Dans cet article, nous utiliserons un cas Scrapy pour analyser en détail comment explorer les informations d'une entreprise sur LinkedIn. Déterminer l'URL cible Tout d'abord, nous devons indiquer clairement que notre cible est les informations de l'entreprise sur LinkedIn. Par conséquent, nous devons trouver l’URL de la page d’informations sur l’entreprise LinkedIn. Ouvrez le site Web LinkedIn, saisissez le nom de l'entreprise dans le champ de recherche et

Scrapy est un puissant framework d'exploration Python qui peut être utilisé pour obtenir de grandes quantités de données sur Internet. Cependant, lors du développement de Scrapy, nous rencontrons souvent le problème de l'exploration des URL en double, ce qui fait perdre beaucoup de temps et de ressources et affecte l'efficacité. Cet article présentera quelques techniques d'optimisation de Scrapy pour réduire l'exploration des URL en double et améliorer l'efficacité des robots d'exploration Scrapy. 1. Utilisez les attributs start_urls et Allowed_domains dans le robot d'exploration Scrapy pour

Utilisation de Selenium et PhantomJSScrapy dans le robot d'exploration Scrapy Scrapy est un excellent framework de robot d'exploration Web sous Python et a été largement utilisé dans la collecte et le traitement de données dans divers domaines. Dans la mise en œuvre du robot, il est parfois nécessaire de simuler les opérations du navigateur pour obtenir le contenu présenté par certains sites Web. Dans ce cas, Selenium et PhantomJS sont nécessaires. Selenium simule les opérations humaines sur le navigateur, nous permettant d'automatiser les tests d'applications Web

Scrapy est un puissant framework de robot d'exploration Python qui peut nous aider à obtenir des données sur Internet de manière rapide et flexible. Dans le processus d'exploration proprement dit, nous rencontrons souvent divers formats de données tels que HTML, XML et JSON. Dans cet article, nous présenterons comment utiliser Scrapy pour explorer respectivement ces trois formats de données. 1. Explorez les données HTML et créez un projet Scrapy. Tout d'abord, nous devons créer un projet Scrapy. Ouvrez la ligne de commande et entrez la commande suivante : scrapys

À mesure que les applications Internet modernes continuent de se développer et de gagner en complexité, les robots d'exploration Web sont devenus un outil important pour l'acquisition et l'analyse de données. En tant que l'un des frameworks d'exploration les plus populaires en Python, Scrapy possède des fonctions puissantes et des interfaces API faciles à utiliser, qui peuvent aider les développeurs à explorer et à traiter rapidement les données des pages Web. Cependant, face à des tâches d'analyse à grande échelle, une seule instance de robot d'exploration Scrapy est facilement limitée par les ressources matérielles. Scrapy doit donc généralement être conteneurisé et déployé sur un conteneur Docker.

Avec le développement d’Internet, les gens ont de plus en plus recours à Internet pour obtenir des informations. Pour les amateurs de livres, Douban Books est devenu une plateforme indispensable. En outre, Douban Books propose également une multitude d'évaluations et de critiques de livres, permettant aux lecteurs de comprendre un livre de manière plus complète. Cependant, obtenir manuellement ces informations revient à chercher une aiguille dans une botte de foin. À l'heure actuelle, nous pouvons utiliser l'outil Scrapy pour explorer les données. Scrapy est un framework de robot d'exploration open source basé sur Python, qui peut nous aider efficacement
