Spécification C#2.0 (Génériques 2)
20.1.6 Constructeurs statiques dans les classes génériques
Les constructeurs statiques dans les classes génériques sont utilisés pour initialiser des champs statiques pour chacun des différents créés à partir d'une déclaration de classe générique spécifique, effectue une initialisation supplémentaire. Les paramètres de type déclarés par un type générique sont dans la portée et peuvent être utilisés dans le corps du constructeur statique.
Si l'une des situations suivantes se produit, un nouveau type de classe construite fermée sera initialisé pour la première fois.
Lorsqu'une instance d'un type construit fermé est créée
Lorsqu'un membre statique du type construit fermé est référencé
Afin d'initialiser un nouveau type de classe construit fermé, d'abord qu'un nouvel ensemble de champs statiques (§20.1.5) d'un type englobant spécifique sera créé. Chaque champ statique est initialisé à sa valeur par défaut (§5.2). Ensuite, les initialiseurs de champs statiques (§10.4.5.1) sont exécutés pour ces champs statiques. Enfin, le constructeur statique sera exécuté.
Étant donné que le constructeur statique sera exécuté une fois pour chaque type de classe construit englobant, il sera pratique d'implémenter des contrôles d'exécution sur les paramètres de type qui ne peuvent pas être vérifiés par des contraintes (§20.7). Par exemple, le type suivant utilise un constructeur statique pour vérifier si un paramètre de type est un type référence.
class Gen<T> { static Gen(){ if((object)T.default != null){ throw new ArgumentException(“T must be a reference type”); } } }
20.1.7 Accès aux membres protégés
Dans une déclaration de classe générique, l'accès aux membres d'instance protégés hérités de la classe générique est autorisé. Construire une instance de n'importe quel type fera l'affaire . En particulier, les règles d'accès aux membres d'instance internes protégés et protégés spécifiées au §3.5.3 sont étendues pour les génériques en utilisant les règles suivantes.
Dans une classe générique G, pour un membre d'instance protégé hérité M, l'expression de base utilisant E.M est autorisée, à condition que le type de E soit un type de classe construit à partir de G, ou un type de classe qui hérite d'un type de classe construit à partir de G.
Dans l'exemple
class C<T> { protected T x; } class D<T> :C<T> { static void F(){ D<T> dt = new D<T>(); D<int> di = new D<int>(); D<string> ds = new D<string>(); dt.x = T.default; di.x = 123; ds.x = “test”; } }
les trois instructions d'affectation à x sont autorisées car elles se produisent toutes via des instances de types de classe construits à partir de génériques.
20.1.8 Surcharge dans les classes génériques
Les méthodes, constructeurs, indexeurs et opérateurs dans une déclaration de classe générique peuvent être surchargés. Mais pour éviter toute ambiguïté dans les classes construites, ces surcharges sont contraintes. Deux membres de fonction déclarés avec le même nom dans la même déclaration de classe générique doivent avoir de tels types de paramètres, c'est-à-dire que deux membres avec le même nom et la même signature ne peuvent pas apparaître dans un type construit fermé. Lorsqu'on considère tous les types construits fermés possibles, cette règle inclut la possibilité qu'un type qui n'existe pas actuellement dans le programme actuel soit un argument, mais c'est toujours possible [1]. Les contraintes de type sur les paramètres de type sont ignorées dans le cadre de cette règle.
L'exemple suivant montre les surcharges valides et invalides selon cette règle.
nterface I1<T> {…} interface I2<T>{…} class G1<U> { long F1(U u); //无效重载,G<int>将会有使用相同签名的两个成员 int F1(int i); void F2(U u1, U u2); //有效重载,对于U没有类型参数 void F2(int I , string s); //可能同时是int和string void F3(I1<U>a); //有效重载 void F3(I2<U>a); void F4(U a); //有效重载 void F4(U[] a);} class G2<U,V> { void F5(U u , V v); //无效重载,G2<int , int>将会有两个签名相同的成员 void F5(V v, U u); void F6(U u , I1<V> v);//无效重载,G2<I1<int>,int>将会有两个签名相同的成员 void F6(I1<V> v , U u); void F7(U u1,I1<V> V2);//有效的重载,U不可能同时是V和I1<V> void F7(V v1 , U u2); void F8(ref U u); //无效重载 void F8(out V v); } class C1{…} class C2{…} class G3<U , V> where U:C1 where V:C2 { void F9(U u); //无效重载,当检查重载时,在U和V上的约束将被忽略 void F9(V v); }
0.1.9 Méthodes de tableau de paramètres et paramètres de type
Les paramètres de type peuvent être utilisés dans le type de tableau de paramètres. Par exemple, étant donné la déclaration
class C<V> { static void F(int x, int y ,params V[] args); } 方法的扩展形式的如下调用 C<int>.F(10, 20); C<object>.F(10,20,30,40); C<string>.F(10,20,”hello”,”goodbye”); 对应于如下形式: C<int>.F(10,20, new int[]{}); C<object>.F(10,20,new object[]{30,40}); C<string>.F(10,20,new string[](“hello”,”goodbye”));
20.1.10 Classes de substitution et classes génériques
在泛型类中的函数成员可以重写基类中的函数成员。如果基类是一个非泛型类型或封闭构造类型,那么任何重写函数成员不能有包含类型参数的组成类型。然而,如果一个基类是一个开放构造类型,那么重写函数成员可以使用在其声明中的类型参数。当重写基类成员时,基类成员必须通过替换类型实参而被确定,如§20.5.4中所描述的。一旦基类的成员被确定,用于重写的规则和非泛型类是一样的。
下面的例子演示了对于现有的泛型其重写规则是如何工作的。
abstract class C<T> { public virtual T F(){…} public virtual C<T> G(){…} public virtual void H(C<T> x ){…} } class D:C<string> { public override string F(){…}//OK public override C<string> G(){…}//OK public override void H(C<T> x); //错误,应该是C<string> } class E<T,U>:C<U> { public override U F(){…}//OK public override C<U> G(){…}//OK public override void H(C<T> x){…}//错误,应该是C<U> }
20.1.11泛型类中的运算符
泛型类声明可以定义运算符,它遵循和常规类相同的规则。类声明的实例类型(§20.1.2)必须以一种类似于运算符的常规规则的方式,在运算符声明中被使用,如下
一元运算符必须接受一个实例类型的单一参数。一元运算符“++”和“—”必须返回实例类型。
至少二元运算符的参数之一必须是实例类型。
转换运算符的参数类型和返回类型都必须是实例类型。
下面展示了在泛型类中几个有效的运算符声明的例子
class X<T> { public static X<T> operator ++(X(T) operand){…} public static int operator *(X<T> op1, int op2){…} public static explicit operator X<T>(T value){…} }
对于一个从源类型S到目标类型T的转换运算符,当应用§10.9.3中的规则时,任何关联S或T的类型参数被认为是唯一类型,它们与其他类型没有继承关系,并且在这些类型参数上的任何约束都将被忽略。
在例子
class C<T>{…} class D<T>:C<T> { public static implicit operator C<int>(D<T> value){…}//OK public static implicit operator C<T>(D<T> value){…}//错误 }
第一个运算符声明是允许的,由于§10.9.3的原因,T和int被认为是没有关系的唯一类型。然而,第二个运算符是一个错误,因为C
给定先前的例子,为某些类型实参声明运算符,指定已经作为预定义转换而存在的转换是可能的。
struct Nullable<T> { public static implicit operator Nullable<T>(T value){…} public static explicit operator T(Nullable<T> value){…} }
当类型object作为T的类型实参被指定,第二个运算符声明了一个已经存在的转换(从任何类型到object是一个隐式的,也可以是显式的转换)。
在两个类型之间存在预定义的转换的情形下,在这些类型上的任何用户定义的转换都将被忽略。尤其是
如果存在从类型S到类型T的预定义的隐式转换(§6.1),所有用户定义的转换(隐式的或显式的)都将被忽略。
如果存在从类型S到类型T的预定义的显式转换,那么任何用户定义的从类型S到类型T的显式转换都将被忽略。但用户定义的从S到T的隐式转换仍会被考虑。
对于所有类型除了object,由Nullable
void F(int I , Nullable<int> n){ i = n; //错误 i = (int)n; //用户定义的显式转换 n = i; //用户定义的隐式转换 n = (Nullable<int>)i; //用户定义的隐式转换 }
然而,对于类型object,预定义的转换在所有情况隐藏了用户定义转换,除了一种情况:
void F(object o , Nullable<object> n){ o = n; //预定义装箱转换 o= (object)n; //预定义装箱转换 n= o; //用户定义隐式转换 n = (Nullable<object>)o; //预定义取消装箱转换 }
20.1.12泛型类中的嵌套类型
泛型类声明可以包含嵌套类型声明。封闭类的类型参数可以在嵌套类型中使用。嵌套类型声明可以包含附加的类型参数,它只适用于该嵌套类型。包含在泛型类声明中的每个类型声明是隐式的泛型类型声明。当编写一个嵌套在泛型类型内的类型的引用时,包含构造类型,包括它的类型实参,必须被命名。然而,在外部类中,内部类型可以被无限制的使用;当构造一个内部类型时,外部类的实例类型可以被隐式地使用。下面的例子展示了三个不同的引用从Inner创建的构造类型的方法,它们都是正确的;前两个是等价的。
class Outer<T> { class Inner<U> { static void F(T t , U u){…} } static void F(T t) { Outer<T>.Inner<string >.F(t,”abc”);//这两个语句有同样的效果 Inner<string>.F(t,”abc”); Outer<int>.Inner<string>.F(3,”abc”); //这个类型是不同的 Outer.Inner<string>.F(t , “abc”); //错误,Outer需要类型参数 } }
尽管这是一种不好的编程风格,但嵌套类型中的类型参数可以隐藏一个成员,或在外部类型中声明的一个类型参数。
class Outer<T> { class Inner<T> //有效,隐藏了 Ouer的 T { public T t; //引用Inner的T } }
20.1.13应用程序入口点
应用程序入口点不能在一个泛型类声明中。
20.2泛型结构声明
像类声明一样,结构声明可以有可选的类型参数。
struct-declaration:(结构声明:) attributes opt struct-modifiers opt struct identifier type-parameter-list opt struct-interfaces opt type-parameter-constraints-clauses opt struct-body ;opt (特性可选 结构修饰符可选 struct 标识符 类型参数列表可选 结构接口可选 类型参数约束语句可选 结构体;可选)
除了§11.3中为结构声明而指出的差别之外,泛型类声明的规则也适用于泛型结构声明。
20.3泛型接口声明
接口也可以定义可选的类型参数
interface-declaration:(接口声明:) attribute opt interface-modifiers opt interface indentifier type-parameter-list opt interface-base opt type-parameter-constraints-clause opt interface-body; (特性可选 接口修饰符可选 interface 标识符 类型参数列表可选 基接口可选 类型参数约束语句可选 接口体;可选) 使用类型参数声明的接口是一个泛型接口声明。除了所指出的那些,泛型接口声明遵循和常规结构声明相同的规则。
在接口声明中的每个类型参数在接口的声明空间定义了一个名字。在一个接口上的类型参数的作用域包括基接口、类型约束语句和接口体。在其作用域之内,一个类型参数可以被用作一个类型。应用到接口上的类型参数和应用到类(§20.1.1)上的类型参数具有相同的限制。
在泛型接口中的方法与泛型类(§20.1.8)中的方法遵循相同的重载规则。
20.3.1实现接口的唯一性
由泛型类型声明实现的接口必须为所有可能的构造类型保留唯一性。没有这条规则,将不可能为特定的构造类型确定调用正确的方法。例如,假定一个泛型类声明允许如下写法。
interface I<T> { void F(); } class X<U, V>:I<U>,I<V> //错误,I<U>和I<V>冲突 { void I<U>.F(){…} void I<V>.F(){…} }
如果允许这么写,那么下面的情形将无法确定执行那段代码。
I<int> x = new X<int ,int>(); x.F();
为了确定一个泛型类型声明的接口列表是有效的,可以按下面的步骤进行。
让L成为在泛型类、结构或接口声明 C中指定的接口的列表。
将任何已经在L中的接口的基接口添加到L
从L中删除任何重复的接口
在类型实参被替换到L后,如果任何从C创建的可能构造类型,导致在L中的两个接口是同一的,那么C的声明是无效的。当确定所有可能的构造类型时,约束声明不予考虑。
在类声明X之上,接口列表L由I和I
20.3.2显式接口成员实现
使用构造接口类型的显式接口成员实现本质上与简单接口类型方式上是相同的。和以往一样,显式接口成员实现必须由一个指明哪个接口被实现的接口类型而限定。该类型可能是一个简单接口或构造接口,如下例子所示。
interface IList<T> { T[] GetElement(); } interface IDictionary<K,V> { V this[K key]; Void Add(K key , V value); } class List<T>:IList<T>,IDictionary<int , T> { T[] IList<T>.GetElement(){…} T IDictionary<int , T>.this[int index]{…} void IDictionary<int , T>.Add(int index , T value){…} }
[1] 也就是在类型参数被替换成类型实参时,有可能替换后的实参导致出现两个成员使用相同的名字和签名。
以上就是C#2.0 Specification(泛型二)的内容,更多相关内容请关注PHP中文网(www.php.cn)!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











C # .NET Les questions et réponses d'entrevue comprennent les connaissances de base, les concepts de base et l'utilisation avancée. 1) Connaissances de base: C # est un langage orienté objet développé par Microsoft et est principalement utilisé dans le framework .NET. 2) Concepts de base: la délégation et les événements permettent des méthodes de liaison dynamiques, et LINQ fournit des fonctions de requête puissantes. 3) Utilisation avancée: la programmation asynchrone améliore la réactivité et les arbres d'expression sont utilisés pour la construction de code dynamique.

Les stratégies de test pour les applications C # .NET comprennent les tests unitaires, les tests d'intégration et les tests de bout en bout. 1. Le test unitaire garantit que l'unité minimale du code fonctionne indépendamment, en utilisant le cadre MSTEST, NUnit ou Xunit. 2. Les tests intégrés vérifient les fonctions de plusieurs unités combinées et des données simulées couramment utilisées et des services externes. 3. Les tests de bout en bout simulent le processus de fonctionnement complet de l'utilisateur et le sélénium est généralement utilisé pour les tests automatisés.

C # est un langage de programmation moderne et orienté objet développé par Microsoft et dans le cadre du .NET Framework. 1.C # prend en charge la programmation orientée objet (POO), y compris l'encapsulation, l'héritage et le polymorphisme. 2. La programmation asynchrone en C # est implémentée via Async et attend des mots clés pour améliorer la réactivité des applications. 3. Utilisez LINQ pour traiter les collections de données concisement. 4. Les erreurs courantes incluent les exceptions de référence NULL et les exceptions indexes hors gamme. Les compétences de débogage comprennent l'utilisation d'un débogueur et une gestion des exceptions. 5. L'optimisation des performances comprend l'utilisation de StringBuilder et d'éviter l'emballage et le déballage inutiles.

C # .NETtisversatileforbothwebandDeskTopDevelopment.1) forweb, useasp.netfordynamicapplications.2) fordesktop, employwindowsformSorwpfforrichInterfaces.3) usexamarinforcross-plateformDevelopment, permanant les codéescosswindows, macos, linux, etmobiledevices.

C # .NET est toujours important car il fournit des outils et des bibliothèques puissants qui prennent en charge le développement d'applications multiples. 1) C # combine .NET Framework pour rendre le développement efficace et pratique. 2) Le mécanisme de collecte de la sécurité et des ordures de C # améliore ses avantages. 3) .NET fournit un environnement de course multiplateforme et des API riches, améliorant la flexibilité du développement.

L'entrevue avec C # Developer Senior Developer nécessite de maîtriser les connaissances de base telles que la programmation asynchrone, la LINQ et les principes de travail internes des frameworks .NET. 1. La programmation asynchrone simplifie les opérations par asynchronisation et attend pour améliorer la réactivité de l'application. 2.Linq exploite des données dans le style SQL et fait attention aux performances. 3. La CLR du cadre net gère la mémoire et la collecte des ordures doit être utilisée avec prudence.

C # .NeTissuitableFormenterprise-LevelApplications withithemicrosofosystématetoitsstrongThpyping, RichLibrary, androbustperformance.wowever, itmayNotBeidealForcross-PlatformDevelopmentorwhenRawpeediscritical, whileLanguageSlikerUstorGomightBeferable.

C # .NET est un choix populaire pour construire des microservices en raison de son fort écosystème et de son riche soutien. 1) Créez RestulAPI à l'aide d'Asp.Netcore pour traiter la création et la requête de l'ordre. 2) Utilisez GRPC pour obtenir une communication efficace entre les microservices, définir et mettre en œuvre les services de commande. 3) Simplifiez le déploiement et la gestion via des microservices conteneurisés Docker.
