Maison > Java > javaDidacticiel > Dix exemples d'algorithmes de tri JAVA

Dix exemples d'algorithmes de tri JAVA

高洛峰
Libérer: 2017-01-17 13:03:09
original
1519 Les gens l'ont consulté

Il existe de nombreux algorithmes de tri, il est donc important de savoir lequel est utilisé dans un scénario spécifique. Afin de choisir un algorithme adapté, les critères suivants peuvent être pris en compte dans l'ordre suggéré :
(1) Temps d'exécution
(2) Espace de stockage
(3) Effort de programmation
Pour les cas avec de petits volumes de données, il n'y a pas beaucoup de différence entre (1) et (2), et (3) est principalement pris en compte pour de grandes quantités de données, (1) est la première priorité ;

1. Tri à bulles

void BubbleSortArray() 
{ 
      for(int i=1;i<n;i++) 
      { 
        for(int j=0;i<n-i;j++) 
         { 
              if(a[j]>a[j+1])//比较交换相邻元素 
               { 
                   int temp; 
                   temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; 
               } 
         } 
      } 
}
Copier après la connexion

Efficacité O(n²), adapté au tri de petites listes.
2. Tri par sélection

void SelectSortArray() 
{ 
    int min_index; 
    for(int i=0;i<n-1;i++) 
    { 
         min_index=i; 
         for(int j=i+1;j<n;j++)//每次扫描选择最小项 
            if(arr[j]<arr[min_index])  min_index=j; 
         if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置 
         { 
             int temp; 
             temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp; 
} 
} 
}
Copier après la connexion

Efficacité O(n²), adapté au tri de petites listes.

3. Tri par insertion

void InsertSortArray() 
{ 
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分 
{ 
    int temp=arr[i];//temp标记为未排序第一个元素 
    int j=i-1; 
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/ 
{ 
    arr[j+1]=arr[j]; 
    j--; 
} 
arr[j+1]=temp; 
} 
}
Copier après la connexion

La meilleure efficacité est O(n); la pire efficacité est O(n²). tri des petites listes
Si Si la liste est essentiellement ordonnée, le tri par insertion est plus efficace que la bulle et la sélection.

void ShellSortArray() 
{ 
  for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例 
{ 
       for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表 
{ 
   for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序 
   { 
      int temp=arr[i]; 
      int j=i-incr; 
      while(j>=0&&arr[j]>temp) 
      { 
          arr[j+incr]=arr[j]; 
          j-=incr; 
} 
arr[j+incr]=temp; 
} 
} 
}
Copier après la connexion

convient au tri de petites listes.
L'efficacité est estimée à O(nlog2^n)~O(n^1.5), en fonction de la taille initiale de la valeur d'incrément. Il est recommandé d'utiliser des nombres premiers pour les valeurs d'incrément car si la valeur d'incrément est une puissance de 2, les mêmes éléments seront à nouveau comparés lors de la passe suivante.
Le tri Shell améliore le tri par insertion et réduit le nombre de comparaisons. Il s'agit d'un tri instable car les éléments peuvent sauter d'avant en arrière pendant le processus de tri.

void MergeSort(int low,int high) 
{ 
   if(low>=high)   return;//每个子列表中剩下一个元素时停止 
   else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/ 
   MergeSort(low,mid);//子列表进一步划分 
   MergeSort(mid+1,high); 
   int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素 
   for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/ 
   { 
       if (arr[i]<=arr[j];) 
{ 
    B[k]=arr[i]; 
    I++; 
} 
else
    { B[k]=arr[j]; j++; } 
} 
for(   ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表 
      B[k]=arr[j]; 
   for(   ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中 
      B[k]=arr[i]; 
   for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中 
      arr[z]=B[z]; 
}
Copier après la connexion

Efficacité O(nlogn), il n'y a aucune différence entre l'efficacité combinée meilleure, moyenne et pire des cas.
Convient au tri de grandes listes, basé sur la méthode diviser pour régner.

/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/                  void swap(int a,int b){int t;t =a ;a =b ;b =t ;} 
        int Partition(int [] arr,int low,int high) 
        { 
            int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素 
            while (low < high) 
            { 
                //从后往前栽后半部分中寻找第一个小于枢纽元素的元素 
                while (low < high && arr[high] >= pivot) 
                { 
                    --high; 
                } 
                //将这个比枢纽元素小的元素交换到前半部分 
                swap(arr[low], arr[high]); 
                //从前往后在前半部分中寻找第一个大于枢纽元素的元素 
                while (low <high &&arr [low ]<=pivot ) 
                { 
                    ++low ; 
                } 
                swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分 
            } 
            return low ;//返回枢纽元素所在的位置 
        } 
        void QuickSort(int [] a,int low,int high) 
        { 
            if (low <high ) 
            { 
                int n=Partition (a ,low ,high ); 
                QuickSort (a ,low ,n ); 
                QuickSort (a ,n +1,high ); 
            } 
        }
Copier après la connexion

L'efficacité moyenne est O(nlogn), adaptée au tri de grandes listes.
Le temps total de cet algorithme dépend de la position de la valeur pivot ; choisir le premier élément comme pivot peut entraîner une efficacité dans le pire des cas de O(n²). Si les chiffres sont fondamentalement corrects, l’efficacité sera la pire. Avec l'option valeur intermédiaire comme pivot, l'efficacité est O(nlogn).
Basé sur la méthode diviser pour régner.

7. Tri du tas
Tas maximum : les mots-clés de tout nœud non terminal dans ce dernier sont supérieurs ou égaux aux mots-clés de ses enfants gauche et droit. Le nœud en haut du tas est le plus grand de toute la séquence.
Idées :
(1) Soit i=l, et soit temp=kl;
(2) Calculez l'enfant gauche de i, j=2i 1; n- 1, puis passez à (4), sinon passez à (6) ;
(4) Comparez kj et kj 1, si kj 1>kj, alors laissez j=j+1, sinon j reste inchangé ; 🎜>(5) Comparez temp et kj, si kj>temp, alors laissez ki égal à kj, et laissez i=j, j=2i 1, et passez à (3), sinon passez à (6)
(6 ) Laissez ki être à température égale, fin.

Le temps de tri du tas est principalement composé du temps nécessaire à l'établissement du tas initial et à la reconstruction répétée du tas, les deux étant implémentés en appelant Heapify.
void HeapSort(SeqIAst R) 

    {
    //对R[1..n]进行堆排序,不妨用R[0]做暂存单元   
    int I;    BuildHeap(R);
    //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。
    {     
    R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换      Heapify(R,1,i-1);  //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质   
    }   
    }
Copier après la connexion
La pire complexité temporelle du tri par tas est O(nlgn). Les performances moyennes du tri par tas sont plus proches des pires performances. Étant donné qu'un grand nombre de comparaisons sont nécessaires pour créer le tas initial, le tri par tas ne convient pas aux fichiers comportant un petit nombre d'enregistrements. Le tri par tas est un tri sur place et l'espace auxiliaire est O(1). C'est une méthode de tri instable.


La différence entre le tri par tas et le tri par insertion directe :
Dans le tri par sélection directe, afin de sélectionner l'enregistrement avec le plus petit mot-clé parmi R[1..n], n-1 comparaisons doivent être effectuées , puis la sélection de l'enregistrement avec le plus petit mot-clé dans R[2..n] nécessite n-2 comparaisons. En fait, dans les comparaisons n-2 suivantes, de nombreuses comparaisons peuvent avoir été effectuées dans les comparaisons n-1 précédentes, mais comme ces résultats de comparaison n'ont pas été conservés dans la passe de tri précédente, ils ont été répétés dans la passe de tri ultérieure. des opérations sont effectuées.
Le tri par tas peut enregistrer certains résultats de comparaison via une structure arborescente, ce qui peut réduire le nombre de comparaisons.


8. Tri topologique
Exemple : L'ordre dans lequel les cours au choix des étudiants sont programmés
Tri topologique : Organiser les sommets du graphe orienté dans un ordre linéaire en fonction de leur relation de priorité mutuelle processus de séquence.
Méthode :
Sélectionnez un sommet sans prédécesseur dans le graphe orienté et affichez-le.
Supprimez le sommet et tous les arcs se terminant par lui du graphe.
Répétez les deux étapes ci-dessus jusqu'à ce que tous les sommets soient affichés. (le tri topologique est réussi), ou jusqu'à ce qu'il n'y ait plus de sommets sans prédécesseur dans le graphe (il y a un cycle dans le graphe).

La complexité temporelle de l'algorithme est O(n e).
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/ 
{ 
      int indegree[M]; 
      int i,k,j; 
      char n; 
      int count=0; 
      Stack thestack; 
      FindInDegree(G,indegree);//对各顶点求入度indegree[0....num] 
      InitStack(thestack);//初始化栈 
      for(i=0;i<G.num;i++) 
          Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]); 
      for(i=0;i<G.num;i++) 
      { 
           if(indegree[i]==0) 
              Push(thestack.vertices[i]); 
      } 
      Console.Write("拓扑排序输出顺序为:"); 
      while(thestack.Peek()!=null) 
      { 
               Pop(thestack.Peek()); 
               j=locatevex(G,n); 
               if (j==-2) 
                  { 
                         Console.WriteLine("发生错误,程序结束。"); 
                         exit(); 
                  } 
                Console.Write(G.vertices[j].data); 
                count++; 
                for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc) 
                { 
                     k=p.adjvex; 
                     if (!(--indegree[k])) 
                         Push(G.vertices[k]); 
                } 
      } 
      if (count<G.num) 
          Cosole.WriteLine("该图有环,出现错误,无法排序。"); 
      else
          Console.WriteLine("排序成功。"); 
}
Copier après la connexion

9. Tri des championnats
L'idée algorithmique du tri des championnats est similaire à celle des compétitions sportives.
Tout d'abord, regroupez n éléments de données en paires et comparez-les par mots-clés pour obtenir n/2 gagnants de la comparaison (ceux avec des mots-clés plus petits), qui sont retenus comme résultats de la première étape de comparaison
Ensuite, ces n/. 2 éléments de données sont ensuite regroupés en deux groupes et comparés selon des mots-clés,..., et ainsi de suite jusqu'à ce qu'un élément de données avec le mot-clé le plus petit soit sélectionné.

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#define SIZE 100000 
#define MAX 1000000 
struct node 
{ 
 long num;//关键字 
 char str[10]; 
 int lastwin;//最后胜的对手 
 int killer;//被击败的对手 
 long times;//比赛次数 
}data[SIZE]; 
long CompareNum=0; 
long ExchangeNum=0; 
long Read(char name[])//读取文件a.txt中的数据,并存放在数组data[]中;最后返回数据的个数 
{ 
 FILE *fp; 
 long i=1; 
 fp=fopen(name,"rw"); 
 fscanf(fp,"%d%s",&data[i].num,data[i].str); 
 while(!feof(fp)) 
 { 
  i++; 
  fscanf(fp,"%d%s",&data[i].num,data[i].str);  
 } 
 return (i-1); 
} 
long Create(long num)//创建胜者树,返回冠军(最小数)在数组data[]中的下标 
{ 
 int i,j1,j2,max,time=1; 
 long min;//记录当前冠军的下标 
 for(i=1;pow(2,i-1)<num;i++) 

 max=pow(2,i-1);//求叶子结点数目 
 for(i=1;i<=max;i++)//初始化叶子结点 
 { 
  data[i].killer=0; 
  data[i].lastwin=0; 
  data[i].times=0; 
  if(i>num) 
   data[i].num=MAX; 
 } 
 for(i=1;i<=max;i+=2)//第一轮比赛 
 { 
  ++CompareNum; 
  if(data[i].num <= data[i+1].num) 
  { 
   data[i].lastwin = i+1; 
   data[i+1].killer=i; 
   ++data[i].times; 
   ++data[i+1].times; 
   min=i; 
  } 
  else
  { 
   data[i+1].lastwin=i; 
   data[i].killer=i+1; 
   ++data[i].times; 
   ++data[i+1].times; 
   min=i+1; 
  } 
 } 
 j1=j2=0;//记录连续的两个未被淘汰的选手的下标 
 while(time <= (log(max)/log(2)))//进行淘汰赛 
 { 
  for(i=1;i<=max;i++) 
  { 
   if(data[i].times==time && data[i].killer==0)//找到一名选手 
   { 
    j2=i;//默认其为两选手中的后来的 
    if(j1==0)//如果第一位置是空的,则刚来的选手先来的 
     j1=j2; 
    else//否则刚来的选手是后来的,那么选手都已到场比赛开始 
    { 
     ++CompareNum; 
     if(data[j1].num <= data[j2].num)//先来的选手获胜 
     { 
      data[j1].lastwin = j2;//最后赢的是j2 
      data[j2].killer=j1;//j2是被j1淘汰的 
      ++data[j1].times; 
      ++data[j2].times;//两选手场次均加1  
      min=j1;//最小数下标为j1 
      j1=j2=0;//将j1,j2置0 
     } 
     else//同理 
     { 
      data[j2].lastwin=j1; 
      data[j1].killer=j2; 
      ++data[j1].times; 
      ++data[j2].times;      
      min=j2; 
      j1=j2=0; 
     } 
    } 
   } 

  } 
  time++;//轮数加1 
 } 
 return min;//返回冠军的下标 
} 
void TournamentSort(long num)//锦标赛排序 
{ 
 long tag=Create(num);//返回最小数下标 
 FILE *fp1; 
 fp1=fopen("sort.txt","w+");//为写入创建并打开文件sort.txt 
 while(data[tag].num != MAX)//当最小值不是无穷大时 
 { 
  printf("%d %s\n",data[tag].num,data[tag].str);//输出数据 
  fprintf(fp1,"%d %s\n",data[tag].num,data[tag].str);//写入数据 
  data[tag].num=MAX;//将当前冠军用无穷大替换 
  tag=Create(num);//返回下一个冠军的下标  
 } 
} 
int main() 
{ 
 int num; 
 char name[10]; 
 printf("Input name of the file:"); 
 gets(name); 
 num=Read(name);//读文件 
 TournamentSort(num);//锦标赛排序 
 printf("CompareNum=%d\nExchangeNum=%d\n",CompareNum,ExchangeNum); 
 return 0; 
}
Copier après la connexion

十、基数排序
基数排序又被称为桶排序。与前面介绍的几种排序方法相比较,基数排序和它们有明显的不同。
前面所介绍的排序方法都是建立在对数据元素关键字进行比较的基础上,所以可以称为基于比较的排序;
而基数排序首先将待排序数据元素依次“分配”到不同的桶里,然后再把各桶中的数据元素“收集”到一起。
通过使用对多关键字进行排序的这种“分配”和“收集”的方法,基数排序实现了对多关键字进行排序。
例:
每张扑克牌有两个“关键字”:花色和面值。其大小顺序为:
花色:§<¨<©<ª
面值:2<3<……<K<A
扑克牌的大小先根据花色比较,花色大的牌比花色小的牌大;花色一样的牌再根据面值比较大小。所以,将扑克牌按从小到大的次序排列,可得到以下序列:
§2,…,§A,¨2,…,¨A,©2,…,©A,ª2,…,ªA
这种排序相当于有两个关键字的排序,一般有两种方法实现。
其一:可以先按花色分成四堆(每一堆牌具有相同的花色),然后在每一堆牌里再按面值从小到大的次序排序,最后把已排好序的四堆牌按花色从小到大次序叠放在一起就得到排序的结果。
其二:可以先按面值排序分成十三堆(每一堆牌具有相同的面值),然后将这十三堆牌按面值从小到大的顺序叠放在一起,再把整副牌按顺序根据花色再分成四堆(每一堆牌已按面值从小到大的顺序有序),最后将这四堆牌按花色从小到大合在一起就得到排序的结果。
实现方法:
  最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。
  最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。

  using System; 
  using System.Collections.Generic; 
  using System.Linq; 
  using System.Text; 
  namespace LearnSort 
  { 
  class Program 
  { 
  static void Main(string[] args) 
  { 
  int[] arr = CreateRandomArray(10);//产生随机数组 
  Print(arr);//输出数组 
  RadixSort(ref arr);//排序 
  Print(arr);//输出排序后的结果 
  Console.ReadKey(); 
  } 
  public static void RadixSort(ref int[] arr) 
  { 
  int iMaxLength = GetMaxLength(arr); 
  RadixSort(ref arr, iMaxLength); 
  } 
  private static void RadixSort(ref int[] arr, int iMaxLength) 
  { 
  List<int> list = new List<int>();//存放每次排序后的元素 
  List<int>[] listArr = new List<int>[10];//十个桶 
  char currnetChar;//存放当前的字符比如说某个元素123 中的2 
  string currentItem;//存放当前的元素比如说某个元素123 
  for (int i = 0; i < listArr.Length; i++)//给十个桶分配内存初始化。 
  listArr[i] = new List<int>(); 
  for (int i = 0; i < iMaxLength; i++)//一共执行iMaxLength次,iMaxLength是元素的最大位数。 
  { 
  foreach (int number in arr)//分桶 
  { 
  currentItem = number.ToString();//将当前元素转化成字符串 
  try { currnetChar = currentItem[currentItem.Length-i-1]; }//从个位向高位开始分桶 
  catch { listArr[0].Add(number); continue; }//如果发生异常,则将该数压入listArr[0]。比如说5 是没有十位数的,执行上面的操作肯定会发生越界异常的,这正是期望的行为,我们认为5的十位数是0,所以将它压入listArr[0]的桶里。 
  switch (currnetChar)//通过currnetChar的值,确定它压人哪个桶中。 
  { 
  case &#39;0&#39;: listArr[0].Add(number); break; 
  case &#39;1&#39;: listArr[1].Add(number); break; 
  case &#39;2&#39;: listArr[2].Add(number); break; 
  case &#39;3&#39;: listArr[3].Add(number); break; 
  case &#39;4&#39;: listArr[4].Add(number); break; 
  case &#39;5&#39;: listArr[5].Add(number); break; 
  case &#39;6&#39;: listArr[6].Add(number); break; 
  case &#39;7&#39;: listArr[7].Add(number); break; 
  case &#39;8&#39;: listArr[8].Add(number); break; 
  case &#39;9&#39;: listArr[9].Add(number); break; 
  default: throw new Exception("unknow error"); 
  } 
  } 
  for (int j = 0; j < listArr.Length; j++)//将十个桶里的数据重新排列,压入list 
  foreach (int number in listArr[j].ToArray<int>()) 
  { 
  list.Add(number); 
  listArr[j].Clear();//清空每个桶 
  } 
  arr = list.ToArray<int>();//arr指向重新排列的元素 
  //Console.Write("{0} times:",i); 
  Print(arr);//输出一次排列的结果 
  list.Clear();//清空list 
  } 
  } 
  //得到最大元素的位数 
  private static int GetMaxLength(int[] arr) 
  { 
  int iMaxNumber = Int32.MinValue; 
  foreach (int i in arr)//遍历得到最大值 
  { 
  if (i > iMaxNumber) 
  iMaxNumber = i; 
  } 
  return iMaxNumber.ToString().Length;//这样获得最大元素的位数是不是有点投机取巧了... 
  } 
  //输出数组元素 
  public static void Print(int[] arr) 
  { 
  foreach (int i in arr) 
  System.Console.Write(i.ToString()+&#39;\t&#39;); 
  System.Console.WriteLine(); 
  } 
  //产生随机数组。随机数的范围是0到1000。参数iLength指产生多少个随机数 
  public static int[] CreateRandomArray(int iLength) 
  { 
  int[] arr = new int[iLength]; 
  Random random = new Random(); 
  for (int i = 0; i < iLength; i++) 
  arr[i] = random.Next(0,1001); 
  return arr; 
  } 
  } 
  }
Copier après la connexion

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。

更多十种JAVA排序算法实例相关文章请关注PHP中文网!


Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal