


[Python] Web Crawler (7) : Tutoriel sur les expressions régulières en Python
Ensuite, je vais utiliser Aibai pour créer un petit exemple de robot.
Mais avant cela, examinons en détail le contenu associé des expressions régulières en Python.
Le rôle des expressions régulières dans les robots Python est comme la liste utilisée par l'enseignant lors de l'appel nominal. C'est une arme magique indispensable.
Le contenu suivant est reproduit à partir de CNBLOG : http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html
Je n'ai pas fait attention quand en le modifiant, je suis vraiment désolé.
1. Bases des expressions régulières
1.1. Introduction au concept
Les expressions régulières sont un outil puissant pour traiter les chaînes, et elles ne font pas partie de Python.
Le concept d'expressions régulières se retrouve également dans d'autres langages de programmation. La seule différence est que différents langages de programmation prennent en charge différents nombres de syntaxes.
Il possède sa propre syntaxe unique et un moteur de traitement indépendant. Dans les langages qui fournissent des expressions régulières, la syntaxe des expressions régulières est la même.
La figure suivante montre le processus de correspondance à l'aide d'expressions régulières :
Processus de correspondance approximatif des expressions régulières C'est :
1. Retirez l'expression et comparez-la tour à tour avec les caractères du texte,
2 Si chaque caractère peut être associé, la correspondance est réussie une fois qu'il y a un caractère qui ; ne parvient pas à correspondre, la correspondance a échoué.
3. S'il y a des quantificateurs ou des limites dans l'expression, le processus sera légèrement différent.
La figure suivante répertorie les métacaractères et la syntaxe des expressions régulières pris en charge par Python :
Mode gourmand et mode non gourmand des quantificateurs
<.># -*- coding: utf-8 -*- #一个简单的re实例,匹配字符串中的hello字符串 #导入re模块 import re # 将正则表达式编译成Pattern对象,注意hello前面的r的意思是“原生字符串” pattern = re.compile(r'hello') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None match1 = pattern.match('hello world!') match2 = pattern.match('helloo world!') match3 = pattern.match('helllo world!') #如果match1匹配成功 if match1: # 使用Match获得分组信息 print match1.group() else: print 'match1匹配失败!' #如果match2匹配成功 if match2: # 使用Match获得分组信息 print match2.group() else: print 'match2匹配失败!' #如果match3匹配成功 if match3: # 使用Match获得分组信息 print match3.group() else: print 'match3匹配失败!'
re.I(全拼:IGNORECASE): 忽略大小写(括号内是完整写法,下同)
re.M(全拼:MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
re.S(全拼:DOTALL): 点任意匹配模式,改变'.'的行为
re.L(全拼:LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
re.U(全拼:UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
re.X(全拼:VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。
以下两个正则表达式是等价的:
# -*- coding: utf-8 -*- #两个等价的re匹配,匹配一个小数 import re a = re.compile(r"""\d + # the integral part \. # the decimal point \d * # some fractional digits""", re.X) b = re.compile(r"\d+\.\d*") match11 = a.match('3.1415') match12 = a.match('33') match21 = b.match('3.1415') match22 = b.match('33') if match11: # 使用Match获得分组信息 print match11.group() else: print u'match11不是小数' if match12: # 使用Match获得分组信息 print match12.group() else: print u'match12不是小数' if match21: # 使用Match获得分组信息 print match21.group() else: print u'match21不是小数' if match22: # 使用Match获得分组信息 print match22.group() else: print u'match22不是小数'
re提供了众多模块方法用于完成正则表达式的功能。
这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,
但同时也无法复用编译后的Pattern对象。
这些方法将在Pattern类的实例方法部分一起介绍。
如一开始的hello实例可以简写为:
# -*- coding: utf-8 -*- #一个简单的re实例,匹配字符串中的hello字符串 import re m = re.match(r'hello', 'hello world!') print m.group()
re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回
2.2. Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
string: 匹配时使用的文本。
re: 匹配时使用的Pattern对象。
pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
span([group]):
返回(start(group), end(group))。
expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g
下面来用一个py实例输出所有的内容加深理解:
# -*- coding: utf-8 -*- #一个简单的match实例 import re # 匹配如下内容:单词+空格+单词+任意字符 m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!') print "m.string:", m.string print "m.re:", m.re print "m.pos:", m.pos print "m.endpos:", m.endpos print "m.lastindex:", m.lastindex print "m.lastgroup:", m.lastgroup print "m.group():", m.group() print "m.group(1,2):", m.group(1, 2) print "m.groups():", m.groups() print "m.groupdict():", m.groupdict() print "m.start(2):", m.start(2) print "m.end(2):", m.end(2) print "m.span(2):", m.span(2) print r"m.expand(r'\g<2> \g<1>\g<3>'):", m.expand(r'\2 \1\3') ### output ### # m.string: hello world! # m.re: <_sre.SRE_Pattern object at 0x016E1A38> # m.pos: 0 # m.endpos: 12 # m.lastindex: 3 # m.lastgroup: sign # m.group(1,2): ('hello', 'world') # m.groups(): ('hello', 'world', '!') # m.groupdict(): {'sign': '!'} # m.start(2): 6 # m.end(2): 11 # m.span(2): (6, 11) # m.expand(r'\2 \1\3'): world hello!
2.3. Pattern
Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。
Pattern不能直接实例化,必须使用re.compile()进行构造,也就是re.compile()返回的对象。
Pattern提供了几个可读属性用于获取表达式的相关信息:
pattern: 编译时用的表达式字符串。
flags: 编译时用的匹配模式。数字形式。
groups: 表达式中分组的数量。
groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
可以用下面这个例子查看pattern的属性:
# -*- coding: utf-8 -*- #一个简单的pattern实例 import re p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL) print "p.pattern:", p.pattern print "p.flags:", p.flags print "p.groups:", p.groups print "p.groupindex:", p.groupindex ### output ### # p.pattern: (\w+) (\w+)(?P<sign>.*) # p.flags: 16 # p.groups: 3 # p.groupindex: {'sign': 3}
下面重点介绍一下pattern的实例方法及其使用。 1.match match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]): 这个方法将从string的pos下标处起尝试匹配pattern; 如果pattern结束时仍可匹配,则返回一个Match对象; 如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。 pos和endpos的默认值分别为0和len(string); re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。 注意:这个方法并不是完全匹配。 当pattern结束时若string还有剩余字符,仍然视为成功。 想要完全匹配,可以在表达式末尾加上边界匹配符'$'。 下面来看一个Match的简单案例:
# encoding: UTF-8 import re # 将正则表达式编译成Pattern对象 pattern = re.compile(r'hello') # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None match = pattern.match('hello world!') if match: # 使用Match获得分组信息 print match.group() ### 输出 ### # hello
2.search
search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。
从string的pos下标处起尝试匹配pattern,
如果pattern结束时仍可匹配,则返回一个Match对象;
若无法匹配,则将pos加1后重新尝试匹配;
直到pos=endpos时仍无法匹配则返回None。
pos和endpos的默认值分别为0和len(string));
re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
那么它和match有什么区别呢?
match()函数只检测re是不是在string的开始位置匹配,
search()会扫描整个string查找匹配,
match()只有在0位置匹配成功的话才有返回,如果不是开始位置匹配成功的话,match()就返回none
例如:
print(re.match(‘super’, ‘superstition’).span())
会返回(0, 5)
print(re.match(‘super’, ‘insuperable’))
则返回None
search()会扫描整个字符串并返回第一个成功的匹配
例如:
print(re.search(‘super’, ‘superstition’).span())
返回(0, 5)
print(re.search(‘super’, ‘insuperable’).span())
返回(2, 7)
看一个search的实例:
# -*- coding: utf-8 -*- #一个简单的search实例 import re # 将正则表达式编译成Pattern对象 pattern = re.compile(r'world') # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None # 这个例子中使用match()无法成功匹配 match = pattern.search('hello world!') if match: # 使用Match获得分组信息 print match.group() ### 输出 ### # world
3.split
split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。
maxsplit用于指定最大分割次数,不指定将全部分割。
import re p = re.compile(r'\d+') print p.split('one1two2three3four4') ### output ### # ['one', 'two', 'three', 'four', '']
4.findall
findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。
import re p = re.compile(r'\d+') print p.findall('one1two2three3four4') ### output ### # ['1', '2', '3', '4']
5.finditer
finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
import re p = re.compile(r'\d+') for m in p.finditer('one1two2three3four4'): print m.group(), ### output ### # 1 2 3 4
6.sub
sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
import re p = re.compile(r'(\w+) (\w+)') s = 'i say, hello world!' print p.sub(r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print p.sub(func, s) ### output ### # say i, world hello! # I Say, Hello World!
7.subn
subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。
import re p = re.compile(r'(\w+) (\w+)') s = 'i say, hello world!' print p.subn(r'\2 \1', s) def func(m): return m.group(1).title() + ' ' + m.group(2).title() print p.subn(func, s) ### output ### # ('say i, world hello!', 2) # ('I Say, Hello World!', 2)
至此,Python的正则表达式基本介绍就算是完成了^_^
以上就是[Python]网络爬虫(七):Python中的正则表达式教程的内容,更多相关内容请关注PHP中文网(www.php.cn)!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

HaDIDB: Une base de données Python évolutive de haut niveau légère HaDIDB (HaDIDB) est une base de données légère écrite en Python, avec un niveau élevé d'évolutivité. Installez HaDIDB à l'aide de l'installation PIP: PiPinStallHaDIDB User Management Créer un utilisateur: CreateUser () pour créer un nouvel utilisateur. La méthode Authentication () authentifie l'identité de l'utilisateur. FromHadidb.OperationMportUserUser_OBJ = User ("Admin", "Admin") User_OBJ.

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

La connexion MySQL peut être due aux raisons suivantes: le service MySQL n'est pas démarré, le pare-feu intercepte la connexion, le numéro de port est incorrect, le nom d'utilisateur ou le mot de passe est incorrect, l'adresse d'écoute dans my.cnf est mal configurée, etc. 2. Ajustez les paramètres du pare-feu pour permettre à MySQL d'écouter le port 3306; 3. Confirmez que le numéro de port est cohérent avec le numéro de port réel; 4. Vérifiez si le nom d'utilisateur et le mot de passe sont corrects; 5. Assurez-vous que les paramètres d'adresse de liaison dans My.cnf sont corrects.

MySQL Workbench peut se connecter à MARIADB, à condition que la configuration soit correcte. Sélectionnez d'abord "MariADB" comme type de connecteur. Dans la configuration de la connexion, définissez correctement l'hôte, le port, l'utilisateur, le mot de passe et la base de données. Lorsque vous testez la connexion, vérifiez que le service MARIADB est démarré, si le nom d'utilisateur et le mot de passe sont corrects, si le numéro de port est correct, si le pare-feu autorise les connexions et si la base de données existe. Dans une utilisation avancée, utilisez la technologie de mise en commun des connexions pour optimiser les performances. Les erreurs courantes incluent des autorisations insuffisantes, des problèmes de connexion réseau, etc. Lors des erreurs de débogage, analysez soigneusement les informations d'erreur et utilisez des outils de débogage. L'optimisation de la configuration du réseau peut améliorer les performances

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.
