Python-SQLALchimie

高洛峰
Libérer: 2017-02-15 15:25:50
original
1237 Les gens l'ont consulté

Initialisation

# 检查是否已经安装以及版本号
>>> import sqlalchemy
>>> sqlalchemy.__version__ 
’1.1.4‘
Copier après la connexion
>>> from sqlalchemy.ext.declarative import declarative_base
# model都是要继承自Base
>>> Base = declarative_base()

>>> from sqlalchemy import Column, Integer, String
>>> class User(Base):
...     __tablename__ = 'users' # 指定数据表名
...
...     id = Column(Integer, primary_key=True)
...     name = Column(String(50))
...     fullname = Column(String(50))
...     password = Column(String(50))
...
...     def __repr__(self):
...        return "<User(name=&#39;%s&#39;, fullname=&#39;%s&#39;, password=&#39;%s&#39;)>" % (
...                             self.name, self.fullname, self.password)


# 查看创建的数据表结构
>>> User.__table__ 
Table('users', MetaData(bind=None),
            Column('id', Integer(), table=<users>, primary_key=True, nullable=False),
            Column('name', String(length=50), table=<users>),
            Column('fullname', String(length=50), table=<users>),
            Column('password', String(length=50), table=<users>), schema=None)
Copier après la connexion

Création formelle de la table de données

>>> from sqlalchemy import create_engine

# 连接到mysql
>>> engine = create_engine("mysql://root:root@localhost:3306/python?charset=utf8",
                           encoding="utf-8", echo=True)

# 正式创建数据表
>>> Base.metadata.create_all(engine)
CREATE TABLE users (
    id INTEGER NOT NULL AUTO_INCREMENT, 
    name VARCHAR(50), 
    fullname VARCHAR(50), 
    password VARCHAR(50), 
    PRIMARY KEY (id)
)
Copier après la connexion

Création d'une session

Les opérations suivantes sont toutes effectuées via l'objet session

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=engine)
>>> session = Session()
Copier après la connexion

Ajout et mise à jour d'objets

Ajouter un objet utilisateur

>>> ed_user = User(name='ed', fullname='Ed Jones', password='edspassword')
>>> session.add(ed_user)
Copier après la connexion

Interrogez-le, utilisez filter_by pour filtrer, firstlistez uniquement le premier objet de requête

>>> our_user = session.query(User).filter_by(name='ed').first()
BEGIN (implicit)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('ed', 'Ed Jones', 'edspassword')

SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
FROM users
WHERE users.name = ?
 LIMIT ? OFFSET ?
('ed', 1, 0)

>>> our_user
<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;edspassword&#39;)>

>>> ed_user is our_user
True
Copier après la connexion

Utilisez add_all pour ajouter plusieurs objets à la fois

>>> session.add_all([
...     User(name='wendy', fullname='Wendy Williams', password='foobar'),
...     User(name='mary', fullname='Mary Contrary', password='xxg527'),
...     User(name='fred', fullname='Fred Flinstone', password='blah')])
Copier après la connexion

La session est très intelligente, par exemple, elle sait qu'Ed Jones a été modifié

# 可以直接修改ed_user对象
>>> ed_user.password = 'f8s7ccs'

# session会自动知道哪些数据被修改了
>>> session.dirty
IdentitySet([<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)>])

# session也可以知道哪些对象被新建了
>>> session.new
IdentitySet([<User(name=&#39;wendy&#39;, fullname=&#39;Wendy Williams&#39;, password=&#39;foobar&#39;)>,
<User(name=&#39;mary&#39;, fullname=&#39;Mary Contrary&#39;, password=&#39;xxg527&#39;)>,
<User(name=&#39;fred&#39;, fullname=&#39;Fred Flinstone&#39;, password=&#39;blah&#39;)>])
Copier après la connexion

a apporté des modifications à la base de données, il est donc naturel d'effectuer commit À partir de l'instruction echo, nous pouvons voir que nous avons mis à jour 1 objet et créé 3 objets.

>>> session.commit()
UPDATE users SET password=? WHERE users.id = ?
('f8s7ccs', 1)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('wendy', 'Wendy Williams', 'foobar')
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('mary', 'Mary Contrary', 'xxg527')
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('fred', 'Fred Flinstone', 'blah')
COMMIT

>>> ed_user.id
BEGIN (implicit)
SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
FROM users
WHERE users.id = ?
(1,)
1
Copier après la connexion

Annulation en arrière

Étant donné que la session fonctionne au sein d'une transaction, nous pouvons parfois effectuer accidentellement certaines opérations de suppression et annuler. Nous changeons d'abord le nom d'utilisateur de ed_user en Edwardo, puis ajoutons un nouvel utilisateur, mais n'oubliez pas que nous n'avons pas encore commit pour le moment.

>>> ed_user.name = 'Edwardo'
and we’ll add another erroneous user, fake_user:

>>> fake_user = User(name='fakeuser', fullname='Invalid', password='12345')
>>> session.add(fake_user)
Querying the session, we can see that they’re flushed into the current transaction:
Copier après la connexion

Vérifiez la requête

>>> session.query(User).filter(User.name.in_(['Edwardo', 'fakeuser'])).all()
UPDATE users SET name=? WHERE users.id = ?
('Edwardo', 1)
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
('fakeuser', 'Invalid', '12345')
SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
('Edwardo', 'fakeuser')
[<User(name=&#39;Edwardo&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)>, <User(name=&#39;fakeuser&#39;, fullname=&#39;Invalid&#39;, password=&#39;12345&#39;)>]
Copier après la connexion

rollback, nous pouvons savoir que le nom de ed_user est revenu à ed et fake_user a été expulsé de la session

>>> session.rollback()
ROLLBACK

>>> ed_user.name
BEGIN (implicit)
SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
FROM users
WHERE users.id = ?
(1,)
u'ed'

>>> fake_user in session
False
issuing a SELECT illustrates the changes made to the database:
Copier après la connexion

Si vous interrogez à nouveau à ce moment-là, il est évident que le faux utilisateur a disparu et le nom de l'utilisateur ed est redevenu ed au lieu de Edwordo

>>> session.query(User).filter(User.name.in_(['ed', 'fakeuser'])).all()
SELECT users.id AS users_id,
        users.name AS users_name,
        users.fullname AS users_fullname,
        users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
('ed', 'fakeuser')
[<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)>]
Copier après la connexion

Couting

Pour l'opération count() correspondant à l'opération de requête

>>> session.query(User).filter(User.name.like('%ed')).count()
2

>>> from sqlalchemy import func
>>> session.query(func.count(User.name), User.name).group_by(User.name).all()
[(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]
Copier après la connexion

Querying

Une méthode query peut être utilisée pour créer un Query objet

Requête triée par ID utilisateur

>>> for instance in session.query(User).order_by(User.id):
...     print(instance.name, instance.fullname)
ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone
Copier après la connexion

La méthode de requête peut également recevoir des descripteurs instrumentés ORM en tant que paramètres. Les tuples renvoyés par Query sont nommés tuples, fournis par la classe KeyedTuple, et peuvent être traités un peu comme un objet Python ordinaire. Les noms sont les mêmes que le nom d'attribut pour un attribut et le nom de classe pour une classe :

.
>>> for name, fullname in session.query(User.name, User.fullname):
...     print(name, fullname)
ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone
Copier après la connexion

Vous pouvez contrôler les noms des expressions de colonne individuelles à l'aide de la construction

, qui est disponible à partir de n'importe quel objet dérivé de ColumnElement, ainsi que de tout attribut de classe mappé à un (tel que User.name) :
>>> for row in session.query(User, User.name).all():
...    print(row.User, row.name)
<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)> ed
<User(name=&#39;wendy&#39;, fullname=&#39;Wendy Williams&#39;, password=&#39;foobar&#39;)> wendy
<User(name=&#39;mary&#39;, fullname=&#39;Mary Contrary&#39;, password=&#39;xxg527&#39;)> mary
<User(name=&#39;fred&#39;, fullname=&#39;Fred Flinstone&#39;, password=&#39;blah&#39;)> fred
Copier après la connexion

label()Le nom donné à une entité complète telle que User, en supposant que plusieurs entités sont présentes dans l'appel à query(), peut être contrôlé à l'aide de

:
>>> for row in session.query(User.name.label('name_label')).all():
...    print(row.name_label)
ed
wendy
mary
fred
Copier après la connexion

aliased()Les opérations de base avec Query incluent l'émission de LIMIT et OFFSET, le plus facilement en utilisant des tranches de tableau Python et généralement en conjonction avec

 :
>>> from sqlalchemy.orm import aliased
>>> user_alias = aliased(User, name='user_alias')

>>> for row in session.query(user_alias, user_alias.name).all():
...    print(row.user_alias)
<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)>
<User(name=&#39;wendy&#39;, fullname=&#39;Wendy Williams&#39;, password=&#39;foobar&#39;)>
<User(name=&#39;mary&#39;, fullname=&#39;Mary Contrary&#39;, password=&#39;xxg527&#39;)>
<User(name=&#39;fred&#39;, fullname=&#39;Fred Flinstone&#39;, password=&#39;blah&#39;)>
Copier après la connexion

ORDER BYL'objet Query est entièrement génératif, ce qui signifie que la plupart des appels de méthode renvoient un nouvel objet de requête sur lequel d'autres critères peuvent être ajoutés. Par exemple, pour rechercher des utilisateurs nommés « ed » avec le nom complet « Ed Jones », vous pouvez appeler

deux fois, ce qui rejoint les critères en utilisant
>>> for u in session.query(User).order_by(User.id)[1:3]:
...    print(u)
<User(name=&#39;wendy&#39;, fullname=&#39;Wendy Williams&#39;, password=&#39;foobar&#39;)>
<User(name=&#39;mary&#39;, fullname=&#39;Mary Contrary&#39;, password=&#39;xxg527&#39;)>
and filtering results, which is accomplished either with filter_by(), which uses keyword arguments:

>>> for name, in session.query(User.name).\
...             filter_by(fullname='Ed Jones'):
...    print(name)
ed

>>> for name, in session.query(User.name).\
...             filter(User.fullname=='Ed Jones'):
...    print(name)
ed
Copier après la connexion
 :

filter()Vous trouverez ci-dessous quelques-uns des opérateurs les plus couramment utilisésAND

>>> for user in session.query(User).\
...          filter(User.name=='ed').\
...          filter(User.fullname=='Ed Jones'):
...    print(user)
<User(name=&#39;ed&#39;, fullname=&#39;Ed Jones&#39;, password=&#39;f8s7ccs&#39;)>
Common Filter Operators
Copier après la connexion
Construire une relation

filter()Pour créer une relation entre des objets, créons une nouvelle table d'adresses. Les opérations suivantes sont plus lourdes que l'ORM de Django. Nous devons définir la relation dans les deux classes en même temps

equals:
query.filter(User.name == 'ed')

not equals:
query.filter(User.name != 'ed')

LIKE:
query.filter(User.name.like('%ed%'))

IN:
query.filter(User.name.in_(['ed', 'wendy', 'jack']))

# works with query objects too:
query.filter(User.name.in_(
        session.query(User.name).filter(User.name.like('%ed%'))
))

NOT IN:
query.filter(User.name.in_(['ed', 'wendy', 'jack']))

IS NULL:
query.filter(User.name == None)

# alternatively, if pep8/linters are a concern
query.filter(User.name.is_(None))

IS NOT NULL:
query.filter(User.name != None)

# alternatively, if pep8/linters are a concern
query.filter(User.name.isnot(None))

AND:
# use and_()
from sqlalchemy import and_
query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones'))

# or send multiple expressions to .filter()
query.filter(User.name == 'ed', User.fullname == 'Ed Jones')

# or chain multiple filter()/filter_by() calls
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')

Note
Make sure you use and_() and not the Python and operator!

OR:
from sqlalchemy import or_
query.filter(or_(User.name == 'ed', User.name == 'wendy'))

Note
Make sure you use or_() and not the Python or operator!

MATCH:
query.filter(User.name.match('wendy'))

Note
match() uses a database-specific MATCH or CONTAINS function;
its behavior will vary by backend and is not available on some backends such as SQLite.
Copier après la connexion

Travailler avec des objets associés

Maintenant que nous avons créé un utilisateur, un Une collection d'adresses vides correspondant à celle-ci sera également créée. Le type de collection peut être n'importe quel type légal, tel qu'un ensemble/dictionnaires (voir Personnalisation de l'accès à la collection pour plus de détails), mais la collection par défaut est une liste.

>>> from sqlalchemy import ForeignKey
>>> from sqlalchemy.orm import relationship

>>> class Address(Base):
...     __tablename__ = 'addresses'
...     id = Column(Integer, primary_key=True)
...     email_address = Column(String(50), nullable=False)
...     user_id = Column(Integer, ForeignKey('users.id'))
...
...     user = relationship("User", back_populates="addresses") # 将地址表和用户表关联
...
...     def __repr__(self):
...         return "<Address(email_address=&#39;%s&#39;)>" % self.email_address


# 在用户表中还要重新设置一次
>>> User.addresses = relationship(
...     "Address", order_by=Address.id, back_populates="user")

>>> Base.metadata.create_all(engine)
Copier après la connexion
Créons maintenant un autre utilisateur Jack

Nous sommes libres d'ajouter des objets Adresse sur notre objet Utilisateur. Dans ce cas, nous attribuons simplement une liste complète directement :

. Nous associons maintenant l'utilisateur Jack à certaines adresses

>>> jack = User(name='jack', fullname='Jack Bean', password='gjffdd')
>>> jack.addresses
[]
Copier après la connexion

Lors de l'utilisation d'une relation bidirectionnelle, les éléments ajoutés dans un sens deviennent automatiquement visibles dans l'autre sens. Ce comportement se produit en fonction des événements de changement d'attribut et est évalué. en Python, sans utiliser de SQL :

Maintenant, l'objet utilisateur est accessible via l'objet adresse

>>> jack.addresses = [
...                 Address(email_address='jack@google.com'),
...                 Address(email_address='j25@yahoo.com')]
Copier après la connexion
Ajoutons et validons Jack Bean dans la base de données jack ainsi que les deux membres Address dedans. la collection d'adresses correspondantes est ajoutée à la session en même temps, en utilisant un processus appelé cascade :


Suivant

Enregistrer dans la base de données
>>> jack.addresses[1]
<Address(email_address=&#39;j25@yahoo.com&#39;)>

>>> jack.addresses[1].user
<User(name=&#39;jack&#39;, fullname=&#39;Jack Bean&#39;, password=&#39;gjffdd&#39;)>
Copier après la connexion

En recherchant Jack, nous obtenons juste Jack retour. Aucun SQL n'est encore émis pour les adresses de Jack :

commit

Lorsque nous avons accédé à la collection d'adresses, SQL a été soudainement émis. Il s'agit d'un exemple de relation de chargement paresseux. La collection d'adresses est maintenant chargée et se comporte. tout comme une liste ordinaire. Nous aborderons dans un instant les moyens d'optimiser le chargement de cette collection.
>>> session.add(jack)
>>> session.commit()
sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
sqlalchemy.engine.base.Engine ('jack@google.com', 5L)
sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
sqlalchemy.engine.base.Engine ('j25@yahoo.com', 5L)
sqlalchemy.engine.base.Engine COMMIT
Copier après la connexion

Supprimer

>>> jack = session.query(User).\
... filter_by(name='jack').one()
>>> jack
<User(name=&#39;jack&#39;, fullname=&#39;Jack Bean&#39;, password=&#39;gjffdd&#39;)>
Let’s look at the addresses collection. Watch the SQL:

>>> jack.addresses
[<Address(email_address=&#39;jack@google.com&#39;)>, <Address(email_address=&#39;j25@yahoo.com&#39;)>]
Copier après la connexion
Opération de suppression, nous essayons ensuite de supprimer l'objet jack, faites attention à l'objet adresse Il ne sera pas supprimé à cause de cela

>>> session.delete(jack)
>>> session.query(User).filter_by(name='jack').count()
0
So far, so good. How about Jack’s Address objects ?

>>> session.query(Address).filter(
...     Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
...  ).count()
2
Copier après la connexion

Uh oh, they’re still there ! Analyzing the flush SQL, we can see that the user_id column of each address was set to NULL, but the rows weren’t deleted. SQLAlchemy doesn’t assume that deletes cascade, you have to tell it to do so. Configuring delete/delete-orphan Cascade. We will configure cascade options on the User.addresses relationship to change the behavior. While SQLAlchemy allows you to add new attributes and relationships to mappings at any point in time, in this case the existing relationship needs to be removed, so we need to tear down the mappings completely and start again - we’ll close the Session:

直接close来rollback,并不进行commit

>>> session.close()
ROLLBACK
Copier après la connexion

Use a new declarative_base():

>>> Base = declarative_base()
Copier après la connexion

Next we’ll declare the User class, adding in the addresses relationship
including the cascade configuration (we’ll leave the constructor out too):

>>> class User(Base):
...     __tablename__ = 'users'
...
...     id = Column(Integer, primary_key=True)
...     name = Column(String(50))
...     fullname = Column(String(50))
...     password = Column(String(50))
...
...     addresses = relationship("Address", back_populates='user',
...                     cascade="all, delete, delete-orphan")
...
...     def __repr__(self):
...        return "<User(name=&#39;%s&#39;, fullname=&#39;%s&#39;, password=&#39;%s&#39;)>" % (
...                                self.name, self.fullname, self.password)
Copier après la connexion

Then we recreate Address, noting that in this case
we’ve created the Address.user relationship via the User class already:

>>> class Address(Base):
...     __tablename__ = 'addresses'
...     id = Column(Integer, primary_key=True)
...     email_address = Column(String(50), nullable=False)
...     user_id = Column(Integer, ForeignKey('users.id'))
...     user = relationship("User", back_populates="addresses")
...
...     def __repr__(self):
...         return "<Address(email_address=&#39;%s&#39;)>" % self.email_address
Copier après la connexion

Now when we load the user jack (below using get(), which loads by primary key), removing an address from the corresponding addresses collection will result in that Address being deleted:

# load Jack by primary key
>>> jack = session.query(User).get(5)

# remove one Address (lazy load fires off)
>>> del jack.addresses[1]

# only one address remains
>>> session.query(Address).filter(
...     Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
... ).count()
1
Copier après la connexion

Deleting Jack will delete both Jack and the remaining Address associated with the user:

>>> session.delete(jack)

>>> session.query(User).filter_by(name='jack').count()
0

>>> session.query(Address).filter(
...    Address.email_address.in_(['jack@google.com', 'j25@yahoo.com'])
... ).count()
0
Copier après la connexion

Further detail on configuration of cascades is at Cascades. The cascade functionality can also integrate smoothly with the ON DELETE CASCADE functionality of the relational database. See Using Passive Deletes for details.

backref

上面同时设置两个relationship太麻烦了,可以使用backref

from sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address", backref="user")

class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))
Copier après la connexion

The above configuration establishes a collection of Address objects on User called User.addresses. It also establishes a .user attribute on Address which will refer to the parent User object.

In fact, the backref keyword is only a common shortcut for placing a second relationship() onto the Address mapping, including the establishment of an event listener on both sides which will mirror attribute operations in both directions. The above configuration is equivalent to:

rom sqlalchemy import Integer, ForeignKey, String, Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class User(Base):
    __tablename__ = 'user'
    id = Column(Integer, primary_key=True)
    name = Column(String)

    addresses = relationship("Address", back_populates="user")
        
class Address(Base):
    __tablename__ = 'address'
    id = Column(Integer, primary_key=True)
    email = Column(String)
    user_id = Column(Integer, ForeignKey('user.id'))

    user = relationship("User", back_populates="addresses")
Copier après la connexion

Above, we add a .user relationship to Address explicitly. On both relationships, the back_populates directive tells each relationship about the other one, indicating that they should establish “bidirectional” behavior between each other. The primary effect of this configuration is that the relationship adds event handlers to both attributes which have the behavior of “when an append or set event occurs here, set ourselves onto the incoming attribute using this particular attribute name”. The behavior is illustrated as follows. Start with a User and an Address instance. The .addresses collection is empty, and the .user attribute is None:

>>> u1 = User()
>>> a1 = Address()
>>> u1.addresses
[]
>>> print(a1.user)
None
Copier après la connexion

However, once the Address is appended to the u1.addresses collection, both the collection and the scalar attribute have been populated:

>>> u1.addresses.append(a1)
>>> u1.addresses
[<__main__.Address object at 0x12a6ed0>]
>>> a1.user
<__main__.User object at 0x12a6590>
Copier après la connexion

This behavior of course works in reverse for removal operations as well, as well as for equivalent operations on both sides. Such as when .user is set again to None, the Address object is removed from the reverse collection:

>>> a1.user = None
>>> u1.addresses
[]
Copier après la connexion

The manipulation of the .addresses collection and the .user attribute occurs entirely in Python without any interaction with the SQL database. Without this behavior, the proper state would be apparent on both sides once the data has been flushed to the database, and later reloaded after a commit or expiration operation occurs. The backref/back_populates behavior has the advantage that common bidirectional operations can reflect the correct state without requiring a database round trip.

Remember, when the backref keyword is used on a single relationship, it’s exactly the same as if the above two relationships were created inpidually using back_populates on each.

mysql操作

检验一下我们上面的成果以及熟悉创建的mysql表的结构

地址表的结构

> SHOW CREATE TABLE addresses;
+-----------+----------------+
| Table     | Create Table   |
|-----------+----------------|
| addresses | CREATE TABLE `addresses` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `email_address` varchar(50) NOT NULL,
  `user_id` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_id` (`user_id`),
  CONSTRAINT `addresses_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8                |
+-----------+----------------+
1 row in set
Time: 0.005s

> DESC addresses;
+---------------+-------------+--------+-------+-----------+----------------+
| Field         | Type        | Null   | Key   |   Default | Extra          |
|---------------+-------------+--------+-------+-----------+----------------|
| id            | int(11)     | NO     | PRI   |    <null> | auto_increment |
| email_address | varchar(50) | NO     |       |    <null> |                |
| user_id       | int(11)     | YES    | MUL   |    <null> |                |
+---------------+-------------+--------+-------+-----------+----------------+
3 rows in set
Time: 0.002s
Copier après la connexion

用户表的结构

> SHOW CREATE TABLE users;
+---------+----------------+
| Table   | Create Table   |
|---------+----------------|
| users   | CREATE TABLE `users` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(50) DEFAULT NULL,
  `fullname` varchar(50) DEFAULT NULL,
  `password` varchar(50) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8                |
+---------+----------------+
1 row in set
Time: 0.002s

> DESC users;
+----------+-------------+--------+-------+-----------+----------------+
| Field    | Type        | Null   | Key   |   Default | Extra          |
|----------+-------------+--------+-------+-----------+----------------|
| id       | int(11)     | NO     | PRI   |    <null> | auto_increment |
| name     | varchar(50) | YES    |       |    <null> |                |
| fullname | varchar(50) | YES    |       |    <null> |                |
| password | varchar(50) | YES    |       |    <null> |                |
+----------+-------------+--------+-------+-----------+----------------+
4 rows in set
Time: 0.003s
Copier après la connexion

详细数据

> SELECT * FROM addresses;
+------+-----------------+-----------+
|   id | email_address   |   user_id |
|------+-----------------+-----------|
|    3 | jack@google.com |         5 |
|    4 | j25@yahoo.com   |         5 |
+------+-----------------+-----------+
2 rows in set
Time: 0.002s

> SELECT * FROM users;
+------+--------+----------------+------------+
|   id | name   | fullname       | password   |
|------+--------+----------------+------------|
|    1 | ed     | Ed Jones       | f8s7ccs    |
|    2 | wendy  | Wendy Williams | foobar     |
|    3 | mary   | Mary Contrary  | xxg527     |
|    4 | fred   | Fred Flinstone | blah       |
|    5 | jack   | Jack Bean      | gjffdd     |
+------+--------+----------------+------------+
5 rows in set
Time: 0.003s
Copier après la connexion

知乎live设计模型

from sqlalchemy import Column, String, Integer, create_engine, SmallInteger
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base

DB_URI = 'sqlite:///user.db'
Base = declarative_base()
engine = create_engine(DB_URI)
Base.metadata.bind = engine
Session = sessionmaker(bind=engine)
session = Session()
Copier après la connexion
class User(Base):
    __tablename__ = 'live_user'
    
    id = Column(Integer, unique=True, primary_key=True, autoincrement=True)
    speaker_id = Column(String(40), index=True, unique=True)
    name = Column(String(40), index=True, nullable=False)
    gender = Column(SmallInteger, default=2)
    headline = Column(String(200))
    avatar_url = Column(String(100), nullable=False)
    bio = Column(String(200))
    description = Column(String())
    
    @classmethod
    def add(cls, **kwargs):
        speaker_id = kwargs.get('speaker_id', None)
        if id is not None:
            r = session.query(cls).filter_by(speaker_id=speaker_id).first()
            if r:
                return r
        try:
            r = cls(**kwargs)
            session.add(r)
            session.commit()
        except:
            session.rollback()
            raise
        else:
            return r
Copier après la connexion
Base.metadata.create_all()
Copier après la connexion

接口分为2种:

  1. http://www.php.cn/ (未结束)

  2. http://www.php.cn/ (已结束)

elasticsearch-dsl-py相比elasticsearch-py做了各种封装,DSL也支持用类代表一个doc_type(类似数据库中的Table),实现ORM的效果。我们就用它来写Live模型:

from elasticsearch_dsl import DocType, Date, Integer, Text, Float, Boolean
from elasticsearch_dsl.connections import connections
from elasticsearch_dsl.query import SF, Q
from config import SEARCH_FIELDS
from .speaker import User, session

connections.create_connection(hosts=['localhost'])
Copier après la connexion
class Live(DocType):
    id = Integer()
    speaker_id = Integer()
    feedback_score = Float() # 评分
    topic_names = Text(analyzer='ik_max_word')  # 话题标签名字
    seats_taken = Integer()  # 参与人数
    subject = Text(analyzer='ik_max_word')  # 标题
    amount = Float()  # 价格(RMB)
    description = Text(analyzer='ik_max_word')
    status = Boolean()  # public(True)/ended(False)
    starts_at = Date()
    outline = Text(analyzer='ik_max_word')  # Live内容
    speaker_message_count = Integer()
    tag_names = Text(analyzer='ik_max_word')
    liked_num = Integer()
    
    class Meta:
        index = 'live'
        
    @classmethod
    def add(cls, **kwargs):
        id = kwargs.pop('id', None)
        if id is None:
            return False
        live = cls(meta={'id': id}, **kwargs)
        live.save()
        return live
Copier après la connexion

它允许我们用一种非常可维护的方法来组织字典:

In : from elasticsearch_dsl.query import Q
In : Q('multi_match', subject='python').to_dict()
Out: {'multi_match': {'subject': 'python'}}
Copier après la connexion
In : from elasticsearch import Elasticsearch
In : from elasticsearch_dsl import Search, Q
In : s = Search(using=client, index='live')
In : s = s.query('match', subject='python').query(~Q('match', description='量化'))
In : s.execute()
Out: <Response: [<Hit(live/live/789840559912009728): {&#39;subject&#39;: &#39;Python 工程师的入门和进阶&#39;, &#39;feedback_score&#39;: 4.5, &#39;stat...}>]>
Copier après la connexion

上述例子表示从live这个索引(类似数据库中的Database)中找到subject字典包含python,但是description字段不包含量化的Live。

更多Python-SQLALchemy 相关文章请关注PHP中文网!


Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal