Maison développement back-end Tutoriel Python python3 explore le contenu de l'encyclopédie Baidu en fonction de mots-clés

python3 explore le contenu de l'encyclopédie Baidu en fonction de mots-clés

Feb 25, 2017 am 10:52 AM

前言

关于python版本,我一开始看很多资料说python2比较好,因为很多库还不支持3,但是使用到现在为止觉得还是pythin3比较好用,因为编码什么的问题,觉得2还是没有3方便。而且在网上找到的2中的一些资料稍微改一下也还是可以用。

好了,开始说爬百度百科的事。

这里设定的需求是爬取北京地区n个景点的全部信息,n个景点的名称是在文件中给出的。没有用到api,只是单纯的爬网页信息。 

1、根据关键字获取url

由于只需要爬取信息,而且不涉及交互,可以使用简单的方法而不需要模拟浏览器。

可以直接

<strong>http://www.php.cn/"guanjianci"</strong>
Copier après la connexion

<strong>for </strong>l <strong>in </strong>view_names:
 <strong>&#39;&#39;&#39;http://baike.baidu.com/search/word?word=&#39;&#39;&#39; </strong><em># 得到url的方法
</em><em> </em>name=urllib.parse.quote(l)
 name.encode(<strong>&#39;utf-8&#39;</strong>)
 url=<strong>&#39;http://baike.baidu.com/search/word?word=&#39;</strong>+name
Copier après la connexion

这里要注意关键词是中午所以要注意编码问题,由于url中不能出现空格,所以需要用quote函数处理一下。

关于quote():

在 Python2.x 中的用法是:urllib.quote(text) 。Python3.x 中是urllib.parse.quote(text) 。按照标准,URL只允许一部分ASCII 字符(数字字母和部分符号),其他的字符(如汉字)是不符合URL标准的。所以URL中使用其他字符就需要进行URL编码。URL中传参数的部分(query String),格式是:name1=value1&name2=value2&name3=value3。假如你的name或者value值中的『&』或者『=』等符号,就当然会有问题。所以URL中的参数字符串也需要把『&=』等符号进行编码。URL编码的方式是把需要编码的字符转化为%xx的形式。通常URL编码是基于UTF-8的(当然这和浏览器平台有关)

例子:

比如『我,unicode 为 0x6211,UTF-8编码为0xE60x880x91,URL编码就是 %E6%88%91。

Python的urllib库中提供了quotequote_plus两种方法。这两种方法的编码范围不同。不过不用深究,这里用quote就够了。

2、下载url

用urllib库轻松实现,见下面的代码中def download(self,url)

3、利用Beautifulsoup获取html

4、数据分析

百科中的内容是并列的段,所以在爬的时候不能自然的按段逻辑存储(因为全都是并列的)。所以必须用正则的方法。

基本的想法就是把整个html文件看做是str,然后用正则的方法截取想要的内容,在重新把这段内容转换成beautifulsoup对象,然后在进一步处理。

可能要花些时间看一下正则。

代码中还有很多细节,忘了再查吧只能,下次绝对应该边做编写文档,或者做完马上写。。。

贴代码!

# coding:utf-8
&#39;&#39;&#39;
 function:爬取百度百科所有北京景点,
 author:yi
&#39;&#39;&#39;
import urllib.request
from urllib.request import urlopen
from urllib.error import HTTPError
import urllib.parse
from bs4 import BeautifulSoup
import re
import codecs
import json
 
class BaikeCraw(object):
 def __init__(self):
  self.urls =set()
  self.view_datas= {}
 
 def craw(self,filename):
  urls = self.getUrls(filename)
  if urls == None:
   print("not found")
  else:
   for urll in urls:
    print(urll)
    try:
     html_count=self.download(urll)
     self.passer(urll, html_count)
    except:
     print("view do not exist")
    &#39;&#39;&#39;file=self.view_datas["view_name"]
    self.craw_pic(urll,file,html_count)
     print(file)&#39;&#39;&#39;
 
 
 def getUrls (self, filename):
  new_urls = set()
  file_object = codecs.open(filename, encoding=&#39;utf-16&#39;, )
  try:
   all_text = file_object.read()
  except:
   print("文件打开异常!")
   file_object.close()
  file_object.close()
  view_names=all_text.split(" ")
  for l in view_names:
   if &#39;?&#39; in l:
    view_names.remove(l)
  for l in view_names:
   &#39;&#39;&#39;http://baike.baidu.com/search/word?word=&#39;&#39;&#39; # 得到url的方法
   name=urllib.parse.quote(l)
   name.encode(&#39;utf-8&#39;)
   url=&#39;http://baike.baidu.com/search/word?word=&#39;+name
   new_urls.add(url)
  print(new_urls)
  return new_urls
 
 def manger(self):
  pass
 
 def passer(self,urll,html_count):
  soup = BeautifulSoup(html_count, &#39;html.parser&#39;, from_encoding=&#39;utf_8&#39;)
  self._get_new_data(urll, soup)
  return
 
 def download(self,url):
  if url is None:
   return None
  response = urllib.request.urlopen(url)
  if response.getcode() != 200:
   return None
  return response.read()
 
 def _get_new_data(self, url, soup): ##得到数据
  if soup.find(&#39;p&#39;,class_="main-content").find(&#39;h1&#39;) is not None:
   self.view_datas["view_name"]=soup.find(&#39;p&#39;,class_="main-content").find(&#39;h1&#39;).get_text()#景点名
   print(self.view_datas["view_name"])
  else:
   self.view_datas["view_name"] = soup.find("p", class_="feature_poster").find("h1").get_text()
  self.view_datas["view_message"] = soup.find(&#39;p&#39;, class_="lemma-summary").get_text()#简介
  self.view_datas["basic_message"]=soup.find(&#39;p&#39;, class_="basic-info cmn-clearfix").get_text() #基本信息
  self.view_datas["basic_message"]=self.view_datas["basic_message"].split("\n")
  get=[]
  for line in self.view_datas["basic_message"]:
   if line != "":
   get.append(line)
  self.view_datas["basic_message"]=get
  i=1
  get2=[]
  tmp="%%"
  for line in self.view_datas["basic_message"]:
 
   if i % 2 == 1:
    tmp=line
   else:
    a=tmp+":"+line
    get2.append(a)
   i=i+1
  self.view_datas["basic_message"] = get2
  self.view_datas["catalog"] = soup.find(&#39;p&#39;, class_="lemma-catalog").get_text().split("\n")#目录整体
  get = []
  for line in self.view_datas["catalog"]:
   if line != "":
    get.append(line)
  self.view_datas["catalog"] = get
  #########################百科内容
  view_name=self.view_datas["view_name"]
  html = urllib.request.urlopen(url)
  soup2 = BeautifulSoup(html.read(), &#39;html.parser&#39;).decode(&#39;utf-8&#39;)
  p = re.compile(r&#39;&#39;, re.DOTALL) # 尾
  r = p.search(content_data_node)
  content_data = content_data_node[0:r.span(0)[0]]
  lists = content_data.split(&#39;&#39;)
  i = 1
  for list in lists:#每一大块
   final_soup = BeautifulSoup(list, "html.parser")
   name_list = None
   try:
    part_name = final_soup.find(&#39;h2&#39;, class_="title-text").get_text().replace(view_name, &#39;&#39;).strip()
    part_data = final_soup.get_text().replace(view_name, &#39;&#39;).replace(part_name, &#39;&#39;).replace(&#39;编辑&#39;, &#39;&#39;) # 历史沿革
    name_list = final_soup.findAll(&#39;h3&#39;, class_="title-text")
    all_name_list = {}
    na="part_name"+str(i)
    all_name_list[na] = part_name
    final_name_list = []###########
    for nlist in name_list:
     nlist = nlist.get_text().replace(view_name, &#39;&#39;).strip()
     final_name_list.append(nlist)
    fin="final_name_list"+str(i)
    all_name_list[fin] = final_name_list
    print(all_name_list)
    i=i+1
    #正文
    try:
     p = re.compile(r&#39;&#39;, re.DOTALL)
     final_soup = final_soup.decode(&#39;utf-8&#39;)
     r = p.search(final_soup)
     final_part_data = final_soup[r.span(0)[0]:]
     part_lists = final_part_data.split(&#39;&#39;)
     for part_list in part_lists:
      final_part_soup = BeautifulSoup(part_list, "html.parser")
      content_lists = final_part_soup.findAll("p", class_="para")
      for content_list in content_lists: # 每个最小段
       try:
        pic_word = content_list.find("p",
                class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
        try:
         pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word, &#39;&#39;).replace(pic_word2, &#39;&#39;)
        except:
         content_list = content_list.get_text().replace(pic_word, &#39;&#39;)
 
       except:
        try:
         pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
         content_list = content_list.get_text().replace(pic_word2, &#39;&#39;)
        except:
         content_list = content_list.get_text()
       r_part = re.compile(r&#39;\[\d.\]|\[\d\]&#39;)
       part_result, number = re.subn(r_part, "", content_list)
       part_result = "".join(part_result.split())
       #print(part_result)
    except:
     final_part_soup = BeautifulSoup(list, "html.parser")
     content_lists = final_part_soup.findAll("p", class_="para")
     for content_list in content_lists:
      try:
       pic_word = content_list.find("p", class_="lemma-picture text-pic layout-right").get_text() # 去掉文字中的图片描述
       try:
        pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word, &#39;&#39;).replace(pic_word2, &#39;&#39;)
       except:
        content_list = content_list.get_text().replace(pic_word, &#39;&#39;)
 
      except:
       try:
        pic_word2 = content_list.find("p", class_="description").get_text() # 去掉文字中的图片描述
        content_list = content_list.get_text().replace(pic_word2, &#39;&#39;)
       except:
        content_list = content_list.get_text()
      r_part = re.compile(r&#39;\[\d.\]|\[\d\]&#39;)
      part_result, number = re.subn(r_part, "", content_list)
      part_result = "".join(part_result.split())
      #print(part_result)
 
   except:
    print("error")
  return
 
 def output(self,filename):
  json_data = json.dumps(self.view_datas, ensure_ascii=False, indent=2)
  fout = codecs.open(filename+&#39;.json&#39;, &#39;a&#39;, encoding=&#39;utf-16&#39;, )
  fout.write( json_data)
  # print(json_data)
  return
 
 def craw_pic(self,url,filename,html_count):
  soup = BeautifulSoup(html_count, &#39;html.parser&#39;, from_encoding=&#39;utf_8&#39;)
  node_pic=soup.find(&#39;p&#39;,class_=&#39;banner&#39;).find("a", href=re.compile("/photo/poi/....\."))
  if node_pic is None:
   return None
  else:
   part_url_pic=node_pic[&#39;href&#39;]
   full_url_pic=urllib.parse.urljoin(url,part_url_pic)
   #print(full_url_pic)
  try:
   html_pic = urlopen(full_url_pic)
  except HTTPError as e:
   return None
  soup_pic=BeautifulSoup(html_pic.read())
  pic_node=soup_pic.find(&#39;p&#39;,class_="album-list")
  print(pic_node)
  return
 
if __name__ =="__main__" :
 spider=BaikeCraw()
 filename="D:\PyCharm\\view_spider\\view_points_part.txt"
 spider.craw(filename)
Copier après la connexion

总结

用python3根据关键词爬取百度百科的内容到这就基本结束了,希望这篇文章能对大家学习python有所帮助。

更多python3根据关键词爬取百度百科的内容相关文章请关注PHP中文网!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Quelles sont les bibliothèques Python populaires et leurs utilisations? Quelles sont les bibliothèques Python populaires et leurs utilisations? Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Comment créer dynamiquement un objet via une chaîne et appeler ses méthodes dans Python? Apr 01, 2025 pm 11:18 PM

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...

Que sont les expressions régulières? Que sont les expressions régulières? Mar 20, 2025 pm 06:25 PM

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

See all articles