Python implémente la fonction d'un récupérateur de musique

高洛峰
Libérer: 2017-03-03 11:44:23
original
1755 Les gens l'ont consulté

Écoutez la chanson et identifiez la chanson. Comme son nom l'indique, vous utilisez l'appareil pour « écouter » la chanson, puis il vous dira de quelle chanson il s'agit. Et neuf fois sur dix, il devra jouer la chanson à votre place. Une telle fonction est apparue depuis longtemps dans des applications telles que QQ Music. Aujourd'hui, nous allons créer notre propre reconnaissance de chansons en écoutant des chansons

L'organigramme global que nous avons conçu est très simple :
Python implémente la fonction dun récupérateur de musique

-- -- -
Partie enregistrement
-----

Si nous voulons « écouter », nous devons d'abord avoir le processus d'enregistrement. Dans notre expérience, notre bibliothèque musicale utilise également notre code d'enregistrement pour enregistrer, puis extrait les fonctionnalités et les stocke dans la base de données. Nous utilisons l'idée suivante pour enregistrer Python implémente la fonction dun récupérateur de musique

# coding=utf8
import wave

import pyaudio


class recode():
 def recode(self, CHUNK=44100, FORMAT=pyaudio.paInt16, CHANNELS=2, RATE=44100, RECORD_SECONDS=200,
    WAVE_OUTPUT_FILENAME="record.wav"):
  '''

  :param CHUNK: 缓冲区大小
  :param FORMAT: 采样大小
  :param CHANNELS:通道数
  :param RATE:采样率
  :param RECORD_SECONDS:录的时间
  :param WAVE_OUTPUT_FILENAME:输出文件路径
  :return:
  '''
  p = pyaudio.PyAudio()
  stream = p.open(format=FORMAT,
      channels=CHANNELS,
      rate=RATE,
      input=True,
      frames_per_buffer=CHUNK)
  frames = []
  for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
   data = stream.read(CHUNK)
   frames.append(data)
  stream.stop_stream()
  stream.close()
  p.terminate()
  wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
  wf.setnchannels(CHANNELS)
  wf.setsampwidth(p.get_sample_size(FORMAT))
  wf.setframerate(RATE)
  wf.writeframes(''.join(frames))
  wf.close()


if __name__ == '__main__':
 a = recode()
 a.recode(RECORD_SECONDS=30, WAVE_OUTPUT_FILENAME='record_pianai.wav')
Copier après la connexion

Quelle est la forme de la chanson que nous avons enregistrée ?

Si vous ne regardez qu'un seul canal, il s'agit d'un tableau unidimensionnel, qui ressemble à ceci
Python implémente la fonction dun récupérateur de musique

Nous l'attribuons en fonction du valeur d'index Dessiné comme l'axe horizontal, c'est la forme d'audio que nous voyons souvent. Python implémente la fonction dun récupérateur de musique

Partie traitement audio

Nous allons écrire notre code de base ici. Le crucial "comment identifier une chanson". Pensez à la façon dont nous, les humains, différencions les chansons ? Est-ce en pensant à un tableau unidimensionnel comme celui ci-dessus ? Est-ce basé sur le volume de la chanson ? Aucun.

Nous mémorisons les chansons grâce à la séquence de fréquences uniques entendues par nos oreilles, donc si nous voulons écrire sur l'écoute des chansons et leur reconnaissance, nous devons nous concentrer sur la séquence de fréquences de l'audio.

Revoyez ce qu'est la transformée de Fourier. Le cours « Signaux et systèmes » du blogueur était très populaire, mais même si je n'ai pas écrit la forme de transformation spécifique pendant le cours, j'avais quand même une compréhension perceptuelle.

L'essence de la transformée de Fourier est de transformer le signal du domaine temporel en signal du domaine fréquentiel. C'est-à-dire que les axes X et Y d'origine étaient respectivement nos indices et éléments de tableau, mais maintenant ils deviennent la fréquence (ce n'est pas exact, mais cela est bien compris ici) et la taille des composants à cette fréquence. Python implémente la fonction dun récupérateur de musique

Comment comprendre le domaine fréquentiel ? Pour ceux d’entre nous qui ne connaissent pas grand chose en traitement du signal, le plus important est de changer notre compréhension de la composition audio. Nous pensions à l'origine que l'audio est comme la forme d'onde que nous avons donnée au début, qui a une amplitude à chaque instant, et que différentes séquences d'amplitude constituent notre son spécifique. Or, nous pensons que le son est un mélange de signaux de fréquences différentes, et que chacun de leurs signaux existe du début à la fin. Et ils contribuent selon leurs composantes projetées.

Voyons à quoi cela ressemble de convertir une chanson dans le domaine fréquentiel ? Python implémente la fonction dun récupérateur de musique

On peut observer que les composantes de ces fréquences ne sont pas moyennes, et les différences sont très grandes. Dans une certaine mesure, nous pouvons penser que le pic visiblement élevé dans l'image est un signal de fréquence avec une grande énergie de sortie, ce qui signifie que ce signal occupe une position élevée dans cette fréquence audio. Nous avons donc choisi un tel signal pour extraire les caractéristiques de la chanson.

Mais n'oubliez pas que ce dont nous avons parlé auparavant était une séquence de fréquences. Avec un ensemble de transformées de Fourier, nous ne pouvons connaître que les informations de fréquence de la chanson entière, et nous perdons alors la relation temporelle. Il n'y a aucun moyen de parler de "séquence". Nous avons donc adopté une méthode plus compromettante, divisant l'audio en petits morceaux en fonction du temps. Ici, je l'ai divisé en 40 morceaux par seconde.

Laissez une question ici : Pourquoi utiliser des petits blocs au lieu d'un gros bloc comme un par seconde ?

Nous effectuons une transformation de Fourier sur chaque bloc, puis la modulons pour obtenir des tableaux. Nous prenons l'indice avec la plus grande longueur de module dans les quatre intervalles avec des valeurs d'indice (0,40), (40,80), (80,120), (120,180) et synthétisons un quatre-tuple. "empreinte digitale" audio de base.

L'empreinte digitale que nous avons extraite est similaire à la suivante

(39, 65, 110, 131), (15, 66, 108, 161), (3, 63, 118, 146), (11, 62, 82, 158), (15, 41, 95, 140), (2, 71, 106, 143), (15, 44, 80, 133), (36, 43, 80, 135), (22, 58, 80, 120), (29, 52, 89, 126), (15, 59, 89, 126), (37, 59, 89, 126), (37, 59, 89, 126), (37, 67, 119, 126)

音频处理的类有三个方法:载入数据,傅里叶变换,播放音乐。
如下:

# coding=utf8
import os
import re
import wave
import numpy as np
import pyaudio


class voice():
 def loaddata(self, filepath):
  '''

  :param filepath: 文件路径,为wav文件
  :return: 如果无异常则返回True,如果有异常退出并返回False
  self.wave_data内储存着多通道的音频数据,其中self.wave_data[0]代表第一通道
  具体有几通道,看self.nchannels
  '''
  if type(filepath) != str:
   print 'the type of filepath must be string'
   return False
  p1 = re.compile('\.wav')
  if p1.findall(filepath) is None:
   print 'the suffix of file must be .wav'
   return False
  try:
   f = wave.open(filepath, 'rb')
   params = f.getparams()
   self.nchannels, self.sampwidth, self.framerate, self.nframes = params[:4]
   str_data = f.readframes(self.nframes)
   self.wave_data = np.fromstring(str_data, dtype=np.short)
   self.wave_data.shape = -1, self.sampwidth
   self.wave_data = self.wave_data.T
   f.close()
   self.name = os.path.basename(filepath) # 记录下文件名
   return True
  except:
   print 'File Error!'

 def fft(self, frames=40):
  '''
  :param frames: frames是指定每秒钟分块数
  :return:
  '''
  block = []
  fft_blocks = []
  self.high_point = []
  blocks_size = self.framerate / frames # block_size为每一块的frame数量
  blocks_num = self.nframes / blocks_size # 将音频分块的数量
  for i in xrange(0, len(self.wave_data[0]) - blocks_size, blocks_size):
   block.append(self.wave_data[0][i:i + blocks_size])
   fft_blocks.append(np.abs(np.fft.fft(self.wave_data[0][i:i + blocks_size])))
   self.high_point.append((np.argmax(fft_blocks[-1][:40]),
         np.argmax(fft_blocks[-1][40:80]) + 40,
         np.argmax(fft_blocks[-1][80:120]) + 80,
         np.argmax(fft_blocks[-1][120:180]) + 120,
         # np.argmax(fft_blocks[-1][180:300]) + 180,
         )) # 提取指纹的关键步骤,没有取最后一个,但是保留了这一项,可以想想为什么去掉了?

 def play(self, filepath):
  '''
  用来做音频播放的方法
  :param filepath:文件路径 
  :return: 
  '''
  chunk = 1024
  wf = wave.open(filepath, 'rb')
  p = pyaudio.PyAudio()
  # 打开声音输出流
  stream = p.open(format=p.get_format_from_width(wf.getsampwidth()),
      channels=wf.getnchannels(),
      rate=wf.getframerate(),
      output=True)
  # 写声音输出流进行播放
  while True:
   data = wf.readframes(chunk)
   if data == "":
    break
   stream.write(data)

  stream.close()
  p.terminate()


if __name__ == '__main__':
 p = voice()
 p.loaddata('record_beiyiwang.wav')
 p.fft()
Copier après la connexion

这里面的self.high_point是未来应用的核心数据。列表类型,里面的元素都是上面所解释过的指纹的形式。

数据存储和检索部分

因为我们是事先做好了曲库来等待检索,所以必须要有相应的持久化方法。我采用的是直接用mysql数据库来存储我们的歌曲对应的指纹,这样有一个好处:省写代码的时间

我们将指纹和歌曲存成这样的形式:Python implémente la fonction dun récupérateur de musique
顺便一说:为什么各个歌曲前几个的指纹都一样?(当然,后面肯定是千差万别的)其实是音乐开始之前的时间段中没有什么能量较强的点,而由于我们44100的采样率比较高,就会导致开头会有很多重复,别担心。

我们怎么来进行匹配呢?我们可以直接搜索音频指纹相同的数量,不过这样又损失了我们之前说的序列,我们必须要把时间序列用上。否则一首歌曲越长就越容易被匹配到,这种歌曲像野草一样疯狂的占据了所有搜索音频的结果排行榜中的第一名。而且从理论上说,音频所包含的信息就是在序列中体现,就像一句话是靠各个短语和词汇按照一定顺序才能表达出它自己的意思。单纯的看两个句子里的词汇重叠数是完全不能判定两句话是否相似的。我们采用的是下面的算法,不过我们这只是实验性的代码,算法设计的很简单,效率不高。建议想要做更好的结果的同学可以使用改进的DTW算法。

我们在匹配过程中滑动指纹序列,每次比对模式串和源串的对应子串,如果对应位置的指纹相同,则这次的比对相似值加一,我们把滑动过程中得到的最大相似值作为这两首歌的相似度。

举例:

曲库中的一首曲子的指纹序列:[fp13, fp20, fp10, fp29, fp14, fp25, fp13, fp13, fp20, fp33, fp14]

检索音乐的指纹序列: [fp14, fp25, fp13, fp17]

比对过程:
Python implémente la fonction dun récupérateur de musique

最终的匹配相似值为3

存储检索部分的实现代码

# coding=utf-8

import os

import MySQLdb

import my_audio


class memory():
 def __init__(self, host, port, user, passwd, db):
  '''
  初始化存储类
  :param host:主机位置
  :param port:端口
  :param user:用户名
  :param passwd:密码
  :param db:数据库名
  '''
  self.host = host
  self.port = port
  self.user = user
  self.passwd = passwd
  self.db = db

 def addsong(self, path):
  '''
  添加歌曲方法,将指定路径的歌曲提取指纹后放到数据库
  :param path:路径
  :return:
  '''
  if type(path) != str:
   print 'path need string'
   return None
  basename = os.path.basename(path)
  try:
   conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
         charset='utf8')
   # 创建与数据库的连接
  except:
   print 'DataBase error'
   return None
  cur = conn.cursor()
  namecount = cur.execute("select * from fingerprint.musicdata WHERE song_name = '%s'" % basename)
  # 查询新添加的歌曲是否已经在曲库中了
  if namecount > 0:
   print 'the song has been record!'
   return None
  v = my_audio.voice()
  v.loaddata(path)
  v.fft()
  cur.execute("insert into fingerprint.musicdata VALUES('%s','%s')" % (basename, v.high_point.__str__()))
  # 将新歌曲的名字和指纹存到数据库中
  conn.commit()
  cur.close()
  conn.close()

 def fp_compare(self, search_fp, match_fp):
  '''
  指纹比对方法。
  :param search_fp: 查询指纹
  :param match_fp: 库中指纹
  :return:最大相似值 float
  '''
  if len(search_fp) > len(match_fp):
   return 0
  max_similar = 0
  search_fp_len = len(search_fp)
  match_fp_len = len(match_fp)
  for i in range(match_fp_len - search_fp_len):
   temp = 0
   for j in range(search_fp_len):
    if match_fp[i + j] == search_fp[j]:
     temp += 1
   if temp > max_similar:
    max_similar = temp
  return max_similar

 def search(self, path):
  '''
  从数据库检索出
  :param path: 需要检索的音频的路径
  :return:返回列表,元素是二元组,第一项是匹配的相似值,第二项是歌曲名
  '''
  v = my_audio.voice()
  v.loaddata(path)
  v.fft()
  try:
   conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
         charset='utf8')
  except:
   print 'DataBase error'
   return None
  cur = conn.cursor()
  cur.execute("SELECT * FROM fingerprint.musicdata")
  result = cur.fetchall()
  compare_res = []
  for i in result:
   compare_res.append((self.fp_compare(v.high_point[:-1], eval(i[1])), i[0]))
  compare_res.sort(reverse=True)
  cur.close()
  conn.close()
  print compare_res
  return compare_res

 def search_and_play(self, path):
  '''
  跟上个方法一样,不过增加了将搜索出的最优结果直接播放的功能
  :param path: 带检索歌曲路径
  :return:
  '''
  v = my_audio.voice()
  v.loaddata(path)
  v.fft()
  # print v.high_point
  try:
   conn = MySQLdb.connect(host=self.host, port=self.port, user=self.user, passwd=self.passwd, db=self.db,
         charset='utf8')
  except:
   print 'DataBase error'
   return None
  cur = conn.cursor()
  cur.execute("SELECT * FROM fingerprint.musicdata")
  result = cur.fetchall()
  compare_res = []
  for i in result:
   compare_res.append((self.fp_compare(v.high_point[:-1], eval(i[1])), i[0]))
  compare_res.sort(reverse=True)
  cur.close()
  conn.close()
  print compare_res
  v.play(compare_res[0][1])
  return compare_res


if __name__ == '__main__':
 sss = memory('localhost', 3306, 'root', 'root', 'fingerprint')
 sss.addsong('taiyangzhaochangshengqi.wav')
 sss.addsong('beiyiwangdeshiguang.wav')
 sss.addsong('xiaozezhenger.wav')
 sss.addsong('nverqing.wav')
 sss.addsong('the_mess.wav')
 sss.addsong('windmill.wav')
 sss.addsong('end_of_world.wav')
 sss.addsong('pianai.wav')

 sss.search_and_play('record_beiyiwang.wav')
Copier après la connexion

总结

我们这个实验很多地方都很粗糙,核心的算法是从shazam公司提出的算法吸取的“指纹”的思想。希望读者可以提出宝贵建议。

更多Python implémente la fonction dun récupérateur de musique相关文章请关注PHP中文网!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal