Maison développement back-end Tutoriel Python Introduction aux méthodes de fonctionnement simples de pandas.DataFrame (créer, indexer, ajouter et supprimer) en python

Introduction aux méthodes de fonctionnement simples de pandas.DataFrame (créer, indexer, ajouter et supprimer) en python

May 29, 2018 pm 03:23 PM
python

Cet article présente les méthodes de fonctionnement simples de pandas.DataFrame (création, indexation, ajout et suppression) en python, y compris des informations connexes sur la création, l'indexation, l'ajout et la suppression. L'article le présente en détail. can Pour référence, jetons un œil ci-dessous.

Avant-propos

Récemment, j'ai recherché de nombreux modes d'emploi sur Internet pour pandas.DataFrame, qui sont toutes des opérations de base, mais la combinaison de ces opérations Il semble qu'il faille encore du temps pour faire fonctionner correctement le DataFrame, et il m'a fallu beaucoup de temps pour ajuster le bug. Je ferai ici quelques résumés pour votre commodité, pour moi et pour les autres. Amis intéressés, venez jeter un oeil.

1. Opération simple pour créer un DataFrame :

1. Créer basé sur un dictionnaire :

In [1]: import pandas as pd
In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]}
In [4]: bb=pd.DataFrame(aa)
In [5]: bb
Out[5]: 
 one three two
0 1 3 2
1 2 4 3
2 3 5 4`
Copier après la connexion
Les clés du dictionnaire sont les colonnes du DataFrame, mais il n'y a pas de valeur d'index, vous devez donc la définir vous-même. Si elles ne sont pas définies, la valeur par défaut est de commencer à compter à partir de zéro.

bb=pd.DataFrame(aa,index=['first','second','third'])
bb
Out[7]: 
 one three two
first 1 3 2
second 2 4 3
third 3 5 4
Copier après la connexion

2. Créer à partir d'un tableau multidimensionnel

import numpy as np
In [9]: del aa
In [10]: aa=np.array([[1,2,3],[4,5,6],[7,8,9]])
In [11]: aa
Out[11]: 
array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])
In [12]: bb=pd.DataFrame(aa)
In [13]: bb
Out[13]: 
 0 1 2
0 1 2 3
1 4 5 6
2 7 8 9
Copier après la connexion
Pour créer à partir d'un tableau multidimensionnel, vous devez attribuer des colonnes et un index à le DataFrame, sinon c'est la valeur par défaut. Très moche.

bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three'])
In [15]: bb
Out[15]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9
Copier après la connexion

3. Utilisez un autre DataFrame pour créer

bb=pd.DataFrame(aa,index=[22,33,44],columns=['one','two','three'])
bb
Out[15]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9
cc=bb[['one','three']].copy()
Cc
Out[17]: 
 one three
22 1 3
33 4 6
44 7 9
Copier après la connexion
La copie ici est une copie complète. La modification de la valeur dans cc ne peut pas modifier la valeur dans bb. .

cc['three'][22]=5
bb
Out[19]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9

cc
Out[20]: 
 one three
22 1 5
33 4 6
44 7 9
Copier après la connexion

2. Opération d'indexation de DataFrame :

Pour un DataFrame, l'indexation est la plus gênante et la plus sujette aux erreurs.

1. L'indexation d'une ou plusieurs colonnes est relativement simple :

bb['one']
Out[21]: 
22 1
33 4
44 7
Name: one, dtype: int32
Copier après la connexion
Pour plusieurs noms de colonnes, les noms de colonnes d'entrée doivent être stockés dans une liste pour être Variables inscriptibles, sinon une erreur sera signalée.

bb[['one','three']]
Out[29]: 
 one three
22 1 3
33 4 6
44 7 9
Copier après la connexion

2. Indexer un ou plusieurs enregistrements :

bb[1:3]
Out[27]: 
 one two three
33 4 5 6
44 7 8 9
bb[:1]
Out[28]: 
 one two three
22 1 2 3
Copier après la connexion

Notez ici que les deux points sont obligatoires, sinon ils le sont. Colonne d'index.

3. Indexer certains enregistrements de variables dans certaines colonnes Cela m'a longtemps torturé :

Premier type

<🎜. >

Vous ne pouvez pas modifier la valeur ici. Vous pouvez seulement lire la valeur mais pas l'écrire. Cela peut être lié à la fonction
bb.loc[[22,33]][[&#39;one&#39;,&#39;three&#39;]]
Out[30]: 
 one three
22 1 3
33 4 6
Copier après la connexion
 :

loc()

Le deuxième type : cela ne peut être que. consulté
bb.loc[[22,33]][[&#39;one&#39;,&#39;three&#39;]]=[[2,2],[3,6]]
In [32]: bb
Out[32]: 
 one two three
22 1 2 3
33 4 5 6
44 7 8 9
Copier après la connexion

Si vous souhaitez modifier la valeur, une erreur sera signalée.
bb[[&#39;one&#39;,&#39;three&#39;]][:2]
Out[33]: 
 one three
22 1 3
33 4 6
Copier après la connexion

Le troisième type : vous pouvez modifier la valeur des données ! ! !
In [34]: bb[[&#39;one&#39;,&#39;three&#39;]][:2]=[[2,2],[2,2]]
-c:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
F:\Anaconda\lib\site-packages\pandas\core\frame.py:1999: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
 return self._setitem_slice(indexer, value)
Copier après la connexion

Iloc est indexé en fonction du nombre de lignes et de colonnes de données, sans compter l'index et les colonnes

Ce qui suit en est la preuve :
bb.iloc[2:3,2:3]
Out[36]: 
 three
44 9

bb.iloc[1:3,1:3]
Out[37]: 
 two three
33 5 6
44 8 9
bb.iloc[0,0]
Out[38]: 1
Copier après la connexion

bb.iloc[0:4,0:2]=[[9,9],[9,9],[9,9]]
In [45]: bb
Out[45]: 
 one two three
22 9 9 3
33 9 9 6
44 9 9 9
Copier après la connexion

Trois. Créez une nouvelle colonne ou plusieurs colonnes sur le DataFrame d'origine

1. Rien n'est utilisé. Vous ne pouvez créer qu'une seule colonne. pas facile à utiliser. Test personnel Invalide : La liste attribuée par

est essentiellement attribuée dans l'ordre de la valeur d'index donnée, mais nous devons généralement attribuer l'index correspondant si vous le souhaitez. des missions plus avancées, regardez ce qui suit.
bb[&#39;new&#39;]=[2,3,4]
bb
Out[51]: 
 one two three new
22 9 9 3 2
33 9 9 6 3
44 9 9 9 4
bb[[&#39;new&#39;,&#39;new2&#39;]]=[[2,3,4],[5,3,7]]
KeyError: "[&#39;new&#39; &#39;new2&#39;] not in index"
Copier après la connexion

2. Utilisez un dictionnaire pour attribuer des valeurs à plusieurs colonnes par index :

Ici, aa est un dictionnaire et une liste imbriqués, équivalents à un enregistrement. , à l'aide de clés Utilisez-le comme nom d'index au lieu du nom de colonne par défaut. L'objectif de faire correspondre plusieurs colonnes par index est atteint. Étant donné que le stockage de
aa={33:[234,44,55],44:[657,77,77],22:[33,55,457]}
In [58]: bb=bb.join(pd.DataFrame(aa.values(),columns=[&#39;hi&#39;,&#39;hello&#39;,&#39;ok&#39;],index=aa.keys()))
In [59]: bb
Out[59]: 
 one two three new hi hello ok
22 9 9 3 2 33 55 457
33 9 9 6 3 234 44 55
44 9 9 9 4 657 77 77
Copier après la connexion
est chaotique, utiliser

sans attribuer de valeur à son index entraînera une confusion dans les enregistrements. dict()dict()

4. Supprimer plusieurs colonnes ou enregistrements :

Supprimer des colonnes

bb.drop([&#39;new&#39;,&#39;hi&#39;],axis=1)
Out[60]: 
 one two three hello ok
22 9 9 3 55 457
33 9 9 6 44 55
44 9 9 9 77 77
Copier après la connexion
Supprimer des enregistrements

Partagez avec vous un article sur la sommation des lignes et des colonnes et l'ajout de nouvelles lignes et colonnes dans pandas.DataFrame en python. Les amis intéressés peuvent y jeter un œil.
bb.drop([22,33],axis=0)
Out[61]: 
 one two three new hi hello ok
44 9 9 9 4 657 77 77
Copier après la connexion

DataFrame a de nombreuses fonctions qui n'ont pas encore été couvertes. Elles le seront à l'avenir. Après avoir lu l'API sur le site officiel, je continuerai à la partager.

Articles connexes :

À propos de pandas.DataFrame en python pour additionner les lignes et les colonnes et ajouter de nouvelles lignes et colonnes, exemple de code

Détaillé explication de l'exemple de code de la méthode pandas.DataFrame d'exclusion de lignes spécifiques en python

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Peut-on utiliser pour mac Peut-on utiliser pour mac Apr 15, 2025 pm 07:36 PM

VS Code est disponible sur Mac. Il a des extensions puissantes, l'intégration GIT, le terminal et le débogueur, et offre également une multitude d'options de configuration. Cependant, pour des projets particulièrement importants ou un développement hautement professionnel, le code vs peut avoir des performances ou des limitations fonctionnelles.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

See all articles