Maison > développement back-end > Tutoriel Python > Explication détaillée d'exemples de Python extrayant ces photos 'marquées'

Explication détaillée d'exemples de Python extrayant ces photos 'marquées'

Y2J
Libérer: 2017-05-03 16:18:57
original
2756 Les gens l'ont consulté

这篇文章主要介绍了用python找出那些被“标记”的照片的相关资料,需要的朋友可以参考下

源码传送门

环境准备

下面的两个第三方模块都可以直接通过pip快速安装,这里使用py36作为运行环境。

  • python3.6

  • requests

  • exifread

思路

  1. 遍历目录

  2. 拉取数据集合

  3. 遍历集合取得exif

  4. exif信息整理,并获取实体地址

  5. 拷贝文件到结果样本目录

  6. 生成json报告文件

基础知识

下面是现今相片中会存在与GPS相关的关键字,大牛亦可一比带过~ [参考]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

{

 "GPSVersionID": "GPS版本",

 "GPSLatitudeRef": "南北纬",

 "GPSLatitude": "纬度",

 "GPSLongitudeRef": "东西经",

 "GPSLongitude": "经度",

 "GPSAltitudeRef": "海拔参照值",

 "GPSAltitude": "海拔",

 "GPSTimeStamp": "GPS时间戳",

 "GPSSatellites": "测量的卫星",

 "GPSStatus": "接收器状态",

 "GPSMeasureMode": "测量模式",

 "GPSDOP": "测量精度",

 "GPSSpeedRef": "速度单位",

 "GPSSpeed": "GPS接收器速度",

 "GPSTrackRef": "移动方位参照",

 "GPSTrack": "移动方位",

 "GPSImgDirectionRef": "图像方位参照",

 "GPSImgDirection": "图像方位",

 "GPSMapDatum": "地理测量资料",

 "GPSDestLatitudeRef": "目标纬度参照",

 "GPSDestLatitude": "目标纬度",

 "GPSDestLongitudeRef": "目标经度参照",

 "GPSDestLongitude": "目标经度",

 "GPSDestBearingRef": "目标方位参照",

 "GPSDestBearing": "目标方位",

 "GPSDestDistanceRef": "目标距离参照",

 "GPSDestDistance": "目标距离",

 "GPSProcessingMethod": "GPS处理方法名",

 "GPSAreaInformation": "GPS区功能变数名",

 "GPSDateStamp": "GPS日期",

 "GPSDifferential": "GPS修正"

}

Copier après la connexion

初始化

考虑到exifread的模块中有大量的logging输出,这里将它的level级别调到最高。 然后下边的KEY是某站在高德地图API的时候遗留下来的 我也很尴尬。。就当福利了

1

2

3

4

5

6

7

8

9

import os

import time

import json

import random

import logging

import requests

import exifread

logging.basicConfig(level=logging.CRITICAL)

KEY = "169d2dd7829fe45690fabec812d05bc3"

Copier après la connexion

主逻辑函数

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

def main():

 # 预设后缀列表

 types = ["bmp", "jpg", "tiff", "gif", "png"]

 #结果数据集合

 picex = []

 # 文件存储路径

 saves = "$" + input("| SavePath: ").strip()

 # 文件搜索路径 并遍历所有文件返回文件路径列表

 pools = jpgwalk(input("| FindPath: "), types)

 #存储目录

 savep = "%s/%s" % (os.getcwd().replace("\\", "/"), saves)

 if savep in pools:

 pools.remove(savep)

 # 遍历数据集并获取exif信息

 for path in pools:

 res = getEXIF(path)

 if res:

  picex.append(res)

 # 结果报告

 print("| Result %s" % len(picex))

 # 如果存在结果 保存结果到json并讲相关图片复制到该目录下

 if picex:

 #创建目录

 if not os.path.exists(saves):

  os.mkdir(saves)

 #生成一个4格缩进的json文件

 with open("%s/%s.json" % (saves, saves), "wb") as f:

  f.write(json.dumps(picex, ensure_ascii=False, indent=4).encode("utf8"))

 #copy图像到该目录

 for item in picex:

  source_path = item["Filename"]

  with open("%s/%s" % (saves, source_path.split("/")[-1]), "wb") as f_in:

  with open(source_path, "rb") as f_out:

   f_in.write(f_out.read())

Copier après la connexion

遍历方法

遍历指定及其所有下级目录,并返回全部的图片的路径集合,这里要注意的是每次扫描后的拷贝行为都会生成缓存,所以通过指定 $ 来避开。

1

2

3

4

5

6

7

8

9

10

11

# 获取指导目录全部的图片路径

def jpgwalk(path, types):

 _start = time.time()

 _pools = []

 # 遍历该目录 并判断files后缀 如符合规则则拼接路径

 for _root, _dirs, _files in os.walk(path):

 _pools.extend([_root.replace("\\", "/") + "/" +

   _item for _item in _files if _item.split(".")[-1].lower() in types and "$" not in _root])

 #报告消耗时间

 print("| Find %s \n| Time %.3fs" % (len(_pools), time.time() - _start))

 return _pools

Copier après la connexion

经纬度格式化

度分秒转浮点,方便api调用查询,因为存在一些诡异的数据比如 1/0,所以默认返回0

1

2

3

4

5

6

7

def cg(i):

 try:

 _ii = [float(eval(x)) for x in i[1:][:-1].split(', ')]

 _res = _ii[0] + _ii[1] / 60 + _ii[2] / 3600

 return _res

 except ZeropisionError:

 return 0

Copier après la connexion

EXIF信息整理

考虑到大部分的设备还未开始支持朝向、速度、测量依据等关键字,这里暂时只使用比较常见的,如有需要的朋友可以自行添加。毕竟得到的信息越多对社工有更大的帮助。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

def getEXIF(filepath):

 #基础关键字

 _showlist = [

 'GPS GPSDOP',

 'GPS GPSMeasureMode',

 'GPS GPSAltitudeRef',

 'GPS GPSAltitude',

 'Image Software',

 'Image Model',

 'Image Make'

 ]

 #GPS关键字

 _XYlist = ["GPS GPSLatitude", "GPS GPSLongitude"]

 #时间关键字

 _TimeList = ["EXIF DateTimeOrigina", "Image DateTime", "GPS GPSDate"]

 #初始化结果字典

 _infos = {

 'Filename': filepath

 }

 with open(filepath, "rb") as _files:

 _tags = None

 # 尝试去的EXIF信息

 try:

  _tags = exifread.process_file(_files)

 except KeyError:

  return

 # 判断是否存在地理位置信息

 _tagkeys = _tags.keys()

 if _tags and len(set(_tagkeys) & set(_XYlist)) == 2 and cg(str(_tags["GPS GPSLongitude"])) != 0.0:

  for _item in sorted(_tagkeys):

  if _item in _showlist:

   _infos[_item.split()[-1]] = str(_tags[_item]).strip()

  # 经纬度取值

  _infos["GPS"] = (cg(str(_tags["GPS GPSLatitude"])) * float(1.0 if str(_tags.get("GPS GPSLatitudeRef", "N")) == "N" else -1.0),

    cg(str(_tags["GPS GPSLongitude"])) * float(1.0 if str(_tags.get("GPS GPSLongitudeRef", "E")) == "E" else -1.0))

  # 获取实体地址

  _infos["address"] = address(_infos["GPS"])

  # 获取照片海拔高度

  if "GPS GPSAltitudeRef" in _tagkeys:

  try:

   _infos["GPSAltitude"] = eval(_infos["GPSAltitude"])

  except ZeropisionError:

   _infos["GPSAltitude"] = 0

  _infos["GPSAltitude"] = "距%s%.2f米" % ("地面" if int(

   _infos["GPSAltitudeRef"]) == 1 else "海平面", _infos["GPSAltitude"])

  del _infos["GPSAltitudeRef"]

  # 获取可用时间

  _timeitem = list(set(_TimeList) & set(_tagkeys))

  if _timeitem:

  _infos["Dates"] = str(_tags[_timeitem[0]])

  return _infos

Copier après la connexion

地址转换

一个简单的爬虫,调用高德地图api进行坐标转换,考虑到原本是跨域,这里添加基础的反防爬代码。这里有个小细节,海外的一律都取不到(包括台湾),可以通过更换googlemap的api来实现全球查询。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

def address(gps):

 global KEY

 try:

 # 随机UA

 _ulist = [

  "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1",

  "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0",

  "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; InfoPath.2; .NET4.0C; .NET4.0E; .NET CLR 2.0.50727; 360SE)",

  "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",

  "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50",

  "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 2.0.50727; SLCC2; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; Tablet PC 2.0; .NET4.0E)",

  "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)",

  "Mozilla/5.0 (X11; U; Linux i686; rv:1.7.3) Gecko/20040913 Firefox/0.10",

  "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; ja) Presto/2.10.289 Version/12.00",

  "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.93 Safari/537.36"

 ]

 # 伪造header

 _header = {

  "User-Agent": random.choice(_ulist),

  "Accept": "text/javascript, application/javascript, application/ecmascript, application/x-ecmascript, */*; q=0.01",

  "Accept-Encoding": "gzip, deflate, sdch",

  "Accept-Language": "zh-CN,zh;q=0.8",

  "Referer": "http://www.gpsspg.com",

 }

 _res = requests.get(

  "http://restapi.amap.com/v3/geocode/regeo?key={2}&s=rsv3&location={1},{0}&platform=JS&logversion=2.0&sdkversion=1.3&appname=http%3A%2F%2Fwww.gpsspg.com%2Fiframe%2Fmaps%2Famap_161128.htm%3Fmapi%3D3&csid=945C5A2C-E67F-4362-B881-9608D9BC9913".format(gps[0], gps[1], KEY), headers=_header, timeout=(5, 5))

 _json = _res.json()

 # 判断是否取得数据

 if _json and _json["status"] == "1" and _json["info"] == "OK":

  # 返回对应地址

  return _json.get("regeocode").get("formatted_address")

 except Exception as e:

 pass

Copier après la connexion

实例

运行该代码 然后输入保存文件夹名和扫描位置即可

这边可以看到8019张中有396张存在有效的地理位置,打码的地方就不解释了,各位老司机~后期打算加入图像识别,和相似度识别。

下面给大家分享小编收集整理的python专题知识:

python基本语法 

python多线程学习教程 

python排序算法大全

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal