Maison > développement back-end > Tutoriel Python > Exemple de code Python pour analyser les journaux CDN via la bibliothèque Pandas

Exemple de code Python pour analyser les journaux CDN via la bibliothèque Pandas

Y2J
Libérer: 2017-05-05 16:50:45
original
1761 Les gens l'ont consulté

Cet article présente principalement les informations pertinentes sur l'utilisation de la bibliothèque pandas en Python pour l'analyse des journaux cdn. L'article partage l'exemple de code complet de pandas pour l'analyse des journaux cdn, puis présente en détail le contenu pertinent sur la bibliothèque pandas. qui en a besoin Vous pouvez l’utiliser comme référence, jetons un coup d’œil ci-dessous.

Avant-propos

J'ai récemment rencontré un besoin au travail, qui consiste à filtrer certaines données basées sur les journaux CDN, telles que le trafic et le code d'état statistiques. TOP IP, URL, UA, Referer, etc. Dans le passé, le shell bash était utilisé pour implémenter cela, mais lorsque le volume de journaux est important, le nombre de fichiers journaux est de gigaoctets et le nombre de lignes atteint des dizaines de milliards, le traitement via le shell n'est pas suffisant et le temps de traitement est trop long. J'ai donc étudié l'utilisation de Python pandas, une bibliothèque de traitement de données. Dix millions de lignes de journaux sont traitées en 40 secondes environ.

Code

#!/usr/bin/python
# -*- coding: utf-8 -*-
# sudo pip install pandas
author = 'Loya Chen'
import sys
import pandas as pd
from collections import OrderedDict
"""
Description: This script is used to analyse qiniu cdn log.
================================================================================
日志格式
IP - ResponseTime [time +0800] "Method URL HTTP/1.1" code size "referer" "UA"
================================================================================
日志示例
 [0] [1][2]  [3]  [4]   [5]
101.226.66.179 - 68 [16/Nov/2016:04:36:40 +0800] "GET http://www.qn.com/1.jpg -" 
[6] [7] [8]    [9]
200 502 "-" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)"
================================================================================
"""
if len(sys.argv) != 2:
 print('Usage:', sys.argv[0], 'file_of_log')
 exit() 
else:
 log_file = sys.argv[1] 
# 需统计字段对应的日志位置 
ip  = 0
url  = 5
status_code = 6
size = 7
referer = 8
ua  = 9
# 将日志读入DataFrame
reader = pd.read_table(log_file, sep=' ', names=[i for i in range(10)], iterator=True)
loop = True
chunkSize = 10000000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 #Iteration is stopped.
 loop = False
df = pd.concat(chunks, ignore_index=True)
byte_sum = df[size].sum()        #流量统计
top_status_code = pd.DataFrame(df[6].value_counts())      #状态码统计
top_ip  = df[ip].value_counts().head(10)      #TOP IP
top_referer = df[referer].value_counts().head(10)      #TOP Referer
top_ua  = df[ua].value_counts().head(10)      #TOP User-Agent
top_status_code['persent'] = pd.DataFrame(top_status_code/top_status_code.sum()*100)
top_url  = df[url].value_counts().head(10)      #TOP URL
top_url_byte = df[[url,size]].groupby(url).sum().apply(lambda x:x.astype(float)/1024/1024) \
   .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最大的URL
top_ip_byte = df[[ip,size]].groupby(ip).sum().apply(lambda x:x.astype(float)/1024/1024) \
   .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最多的IP
# 将结果有序存入字典
result = OrderedDict([("流量总计[单位:GB]:"   , byte_sum/1024/1024/1024),
   ("状态码统计[次数|百分比]:"  , top_status_code),
   ("IP TOP 10:"    , top_ip),
   ("Referer TOP 10:"   , top_referer),
   ("UA TOP 10:"    , top_ua),
   ("URL TOP 10:"   , top_url),
   ("请求流量最大的URL TOP 10[单位:MB]:" , top_url_byte), 
   ("请求流量最大的IP TOP 10[单位:MB]:" , top_ip_byte)
])
# 输出结果
for k,v in result.items():
 print(k)
 print(v)
 print('='*80)
Copier après la connexion

notes d'étude des pandas

Il existe deux structures de données de base dans Pandas, Series et Dataframe. Une série est un objet similaire à un tableau unidimensionnel, composé d'un ensemble de données et d'un index. Dataframe est une structure de données de type table avec des index de lignes et de colonnes.

from pandas import Series, DataFrame
import pandas as pd
Copier après la connexion

Série

In [1]: obj = Series([4, 7, -5, 3])
In [2]: obj
Out[2]: 
0 4
1 7
2 -5
3 3
Copier après la connexion

La chaîne de la série est représentée par : l'index à gauche et la valeur à droite. Lorsqu'aucun index n'est spécifié, un index de type entier de 0 à N-1 (N est la longueur de la donnée) sera automatiquement créé. Sa représentation matricielle et son objet d'index peuvent être obtenus via les valeurs et les propriétés d'index de la série  :

In [3]: obj.values
Out[3]: array([ 4, 7, -5, 3])
In [4]: obj.index
Out[4]: RangeIndex(start=0, stop=4, step=1)
Copier après la connexion

Habituellement, l'index est spécifié lors de la création de la série :

In [5]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [6]: obj2
Out[6]: 
d 4
b 7
a -5
c 3
Copier après la connexion

Par index obtient une seule ou un groupe de valeurs dans la série :

In [7]: obj2['a']
Out[7]: -5
In [8]: obj2[['c','d']]
Out[8]: 
c 3
d 4
Copier après la connexion

Trier

In [9]: obj2.sort_index()
Out[9]: 
a -5
b 7
c 3
d 4
In [10]: obj2.sort_values()
Out[10]: 
a -5
c 3
d 4
b 7
Copier après la connexion

Opération de filtrage

In [11]: obj2[obj2 > 0]
Out[11]: 
d 4
b 7
c 3
In [12]: obj2 * 2
Out[12]: 
d 8
b 14
a -10
c 6
Copier après la connexion

Membres

In [13]: 'b' in obj2
Out[13]: True
In [14]: 'e' in obj2
Out[14]: False
Copier après la connexion

Créer une série via un dictionnaire

In [15]: sdata = {'Shanghai':35000, 'Beijing':40000, 'Nanjing':26000, 'Hangzhou':30000}
In [16]: obj3 = Series(sdata)
In [17]: obj3
Out[17]: 
Beijing 40000
Hangzhou 30000
Nanjing 26000
Shanghai 35000
Copier après la connexion

Si un seul dictionnaire est transmis, l'index de la série résultante est la clé du dictionnaire d'origine (arrangement ordonné )

In [18]: states = ['Beijing', 'Hangzhou', 'Shanghai', 'Suzhou']
In [19]: obj4 = Series(sdata, index=states)
In [20]: obj4
Out[20]: 
Beijing 40000.0
Hangzhou 30000.0
Shanghai 35000.0
Suzhou  NaN
Copier après la connexion

Lorsque l'index est spécifié, les trois valeurs dans sdata qui correspondent à l'index des états seront trouvées et placées dans la position de réponse, mais comme la valeur sdata correspondant à 'Suzhou' ne peut pas être trouvée , le résultat est NaN (pas un nombre), pandas Les fonctions isnull et notnull

des pandas utilisées pour représenter les valeurs manquantes ou NA peuvent être utilisées pour détecter les données manquantes :

In [21]: pd.isnull(obj4)
Out[21]: 
Beijing False
Hangzhou False
Shanghai False
Suzhou True
In [22]: pd.notnull(obj4)
Out[22]: 
Beijing True
Hangzhou True
Shanghai True
Suzhou False
Copier après la connexion

Series a également des méthodes d'instance similaires

In [23]: obj4.isnull()
Out[23]: 
Beijing False
Hangzhou False
Shanghai False
Suzhou True
Copier après la connexion

Une fonction importante de Series est d'aligner automatiquement les données avec différents index lors des opérations sur les données

In [24]: obj3
Out[24]: 
Beijing 40000
Hangzhou 30000
Nanjing 26000
Shanghai 35000
In [25]: obj4
Out[25]: 
Beijing 40000.0
Hangzhou 30000.0
Shanghai 35000.0
Suzhou  NaN
In [26]: obj3 + obj4
Out[26]: 
Beijing 80000.0
Hangzhou 60000.0
Nanjing  NaN
Shanghai 70000.0
Suzhou  NaN
Copier après la connexion

L'index de Les séries peuvent être modifiées sur place en copiant

In [27]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [28]: obj
Out[28]: 
Bob 4
Steve 7
Jeff -5
Ryan 3
Copier après la connexion

DataFrame

pandasLire le fichier

In [29]: df = pd.read_table('pandas_test.txt',sep=' ', names=['name', 'age'])
In [30]: df
Out[30]: 
 name age
0 Bob 26
1 Loya 22
2 Denny 20
3 Mars 25
Copier après la connexion

colonne DataFrame sélection

df[name]
Copier après la connexion
In [31]: df['name']
Out[31]: 
0 Bob
1 Loya
2 Denny
3 Mars
Name: name, dtype: object
Copier après la connexion

Sélection de ligne DataFrame

df.iloc[0,:] #第一个参数是第几行,第二个参数是列。这里指第0行全部列
df.iloc[:,0] #全部行,第0列
Copier après la connexion
In [32]: df.iloc[0,:]
Out[32]: 
name Bob
age 26
Name: 0, dtype: object
In [33]: df.iloc[:,0]
Out[33]: 
0 Bob
1 Loya
2 Denny
3 Mars
Name: name, dtype: object
Copier après la connexion

Pour obtenir un élément, vous pouvez utiliser iloc Le moyen le plus rapide est iat

In [34]: df.iloc[1,1]
Out[34]: 22
In [35]: df.iat[1,1]
Out[35]: 22
Copier après la connexion

Sélection de blocs DataFrame

In [36]: df.loc[1:2,['name','age']]
Out[36]: 
 name age
1 Loya 22
2 Denny 20
Copier après la connexion

Filtrer les lignes en fonction des conditions

Ajouter des conditions de jugement entre crochets pour filtrer les lignes. Les conditions doivent renvoyer Vrai ou Faux

In [37]: df[(df.index >= 1) & (df.index <= 3)]
Out[37]: 
 name age city
1 Loya 22 Shanghai
2 Denny 20 Hangzhou
3 Mars 25 Nanjing
In [38]: df[df[&#39;age&#39;] > 22]
Out[38]: 
 name age city
0 Bob 26 Beijing
3 Mars 25 Nanjing
Copier après la connexion
<🎜. >Ajouter des colonnes

In [39]: df[&#39;city&#39;] = [&#39;Beijing&#39;, &#39;Shanghai&#39;, &#39;Hangzhou&#39;, &#39;Nanjing&#39;]
In [40]: df
Out[40]: 
 name age city
0 Bob 26 Beijing
1 Loya 22 Shanghai
2 Denny 20 Hangzhou
3 Mars 25 Nanjing
Copier après la connexion
Trier


Trier par colonne spécifiée

In [41]: df.sort_values(by=&#39;age&#39;)
Out[41]: 
 name age city
2 Denny 20 Hangzhou
1 Loya 22 Shanghai
3 Mars 25 Nanjing
0 Bob 26 Beijing
Copier après la connexion
# 引入numpy 构建 DataFrame
import numpy as np
Copier après la connexion
In [42]: df = pd.DataFrame(np.arange(8).reshape((2, 4)), index=[&#39;three&#39;, &#39;one&#39;], columns=[&#39;d&#39;, &#39;a&#39;, &#39;b&#39;, &#39;c&#39;])
In [43]: df
Out[43]: 
 d a b c
three 0 1 2 3
one 4 5 6 7
Copier après la connexion
# 以索引排序
In [44]: df.sort_index()
Out[44]: 
 d a b c
one 4 5 6 7
three 0 1 2 3
In [45]: df.sort_index(axis=1)
Out[45]: 
 a b c d
three 1 2 3 0
one 5 6 7 4
# 降序
In [46]: df.sort_index(axis=1, ascending=False)
Out[46]: 
 d c b a
three 0 3 2 1
one 4 7 6 5
Copier après la connexion
Afficher

# 查看表头5行 
df.head(5)
# 查看表末5行
df.tail(5) 
# 查看列的名字
In [47]: df.columns
Out[47]: Index([&#39;name&#39;, &#39;age&#39;, &#39;city&#39;], dtype=&#39;object&#39;)
# 查看表格当前的值
In [48]: df.values
Out[48]: 
array([[&#39;Bob&#39;, 26, &#39;Beijing&#39;],
 [&#39;Loya&#39;, 22, &#39;Shanghai&#39;],
 [&#39;Denny&#39;, 20, &#39;Hangzhou&#39;],
 [&#39;Mars&#39;, 25, &#39;Nanjing&#39;]], dtype=object)
Copier après la connexion
Transposer

df.T
Out[49]: 
  0  1  2 3
name Bob Loya Denny Mars
age 26 22 20 25
city Beijing Shanghai Hangzhou Nanjing
Copier après la connexion
Utiliser l'opération isin

In [50]: df2 = df.copy()
In [51]: df2[df2[&#39;city&#39;].isin([&#39;Shanghai&#39;,&#39;Nanjing&#39;])]
Out[52]: 
 name age city
1 Loya 22 Shanghai
3 Mars 25 Nanjing
Copier après la connexion
 :

In [53]: df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], 
 ...:    index=[&#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;d&#39;], columns=[&#39;one&#39;, &#39;two&#39;])
In [54]: df
Out[54]: 
 one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
Copier après la connexion
#按列求和
In [55]: df.sum()
Out[55]: 
one 9.25
two -5.80
# 按行求和
In [56]: df.sum(axis=1)
Out[56]: 
a 1.40
b 2.60
c NaN
d -0.55
Copier après la connexion
groupe


groupe fait référence aux étapes suivantes :


  • Diviser les données en groupes en fonction de certains critères

  • Appliquer une fonction à chaque groupe indépendamment

  • Combiner les résultats dans une structure de données

Voir la section Regroupement

In [57]: df = pd.DataFrame({&#39;A&#39; : [&#39;foo&#39;, &#39;bar&#39;, &#39;foo&#39;, &#39;bar&#39;,
 ....:    &#39;foo&#39;, &#39;bar&#39;, &#39;foo&#39;, &#39;foo&#39;],
 ....:   &#39;B&#39; : [&#39;one&#39;, &#39;one&#39;, &#39;two&#39;, &#39;three&#39;,
 ....:    &#39;two&#39;, &#39;two&#39;, &#39;one&#39;, &#39;three&#39;],
 ....:   &#39;C&#39; : np.random.randn(8),
 ....:   &#39;D&#39; : np.random.randn(8)})
 ....: 
In [58]: df
Out[58]: 
 A B  C  D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
Copier après la connexion
regroupez-le, puis appliquez le fonction somme

In [59]: df.groupby(&#39;A&#39;).sum()
Out[59]: 
  C D
A   
bar -2.802588 2.42611
foo 3.146492 -0.63958
In [60]: df.groupby([&#39;A&#39;,&#39;B&#39;]).sum()
Out[60]: 
   C  D
A B   
bar one -1.814470 2.395985
 three -0.595447 0.166599
 two -0.392670 -0.136473
foo one -1.195665 -0.616981
 three 1.928123 -1.623033
 two 2.414034 1.600434
Copier après la connexion
[Recommandations associées 】

1

Tutoriel vidéo gratuit de Python

2

Manuel d'introduction aux bases de Python3.

Tutoriel vidéo Python de la Geeks Academy

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal