pt-query-digest (boîte à outils percona)
pt-query-digest [OPTIONS] [FILES] [DSN]
pt-query-digest slow.log
pt-query-digest --processlist h=host1
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt pt-query-digest --type tcpdump mysql.tcp.txt
pt-query-digest --review h=host2 --no-report slow.log
# 2291.9s user time, 6.4s system time, 41.68M rss, 193.36M vsz # Current date: Mon Jun 19 11:19:51 2017# Hostname: mxqmongodb2 # Files: /home/mysql/db3306/log/slowlog_343306.log # Overall: 6.72M total, 140 unique, 16.12 QPS, 0.69x concurrency _________ # Time range: 2017-06-13T14:34:41 to 2017-06-18T10:22:04# Attribute total min max avg 95% stddev median # ============ ======= ======= ======= ======= ======= ======= =======# Exec time 287519s 1us 20s 43ms 148ms 339ms 214us # Lock time 151259s 0 20s 23ms 144us 319ms 47us # Rows sent 5.40M 0 1000 0.84 0.99 6.58 0.99# Rows examine 388.33M 0 3.72k 60.59 5.75 388.16 0.99# Query size 692.26M 6 799 108.02 202.40 69.96 80.10
# Profile # Rank Query ID Response time Calls R/Call V/M Item # ==== ================== ================= ======= ====== ===== =========# 1 0x255C57D761A899A9 146053.6926 50.8% 75972 1.9225 2.93 UPDATE warehouse # 2 0x813031B8BBC3B329 94038.9621 32.7% 242741 0.3874 0.23 COMMIT # 3 0xA0352AA54FDD5DF2 10125.5055 3.5% 75892 0.1334 0.43 UPDATE order_line # 4 0xE5E8C12332AD11C5 5660.5113 2.0% 75977 0.0745 0.83 SELECT district # 5 0xBD195A4F9D50914F 3634.6219 1.3% 757760 0.0048 1.01 SELECT stock # 6 0xF078A9E73D7A8520 3431.3527 1.2% 75874 0.0452 0.81 UPDATE district # 7 0x9577D48F480A1260 2307.4342 0.8% 50255 0.0459 1.25 SELECT customer # 8 0xFFDA79BA14F0A223 2158.4731 0.8% 75977 0.0284 0.54 SELECT customer warehouse # 9 0x5E61FF668A8E8456 1838.4440 0.6% 1507614 0.0012 0.74 SELECT stock # 10 0x10BEBFE721A275F6 1671.8274 0.6% 757751 0.0022 0.52 INSERT order_line # 11 0x8B2716B5B486F6AA 1658.5984 0.6% 75871 0.0219 0.75 INSERT history # 12 0xBF40A4C7016F2BAE 1504.7939 0.5% 758569 0.0020 0.77 SELECT item # 13 0x37AEB73B59EFC119 1470.5951 0.5% 2838 0.5182 0.27 INSERT SELECT tpcc._stock_new tpcc.stock # 15 0x26C4F579BF19956D 1030.4416 0.4% 1982 0.5199 0.28 INSERT SELECT tpcc.__stock_new tpcc.stock # 22 0xD80B7970DBF2419C 493.0831 0.2% 947 0.5207 0.28 INSERT SELECT tpcc.__stock_new tpcc.stock # 23 0xDE7EA4E363CAD006 488.2134 0.2% 943 0.5177 0.25 INSERT SELECT tpcc.__stock_new tpcc.stock # 25 0x985B012461683472 470.6418 0.2% 907 0.5189 0.25 INSERT SELECT tpcc.__stock_new tpcc.stock # MISC 0xMISC 9482.0467 3.3% 2182254 0.0043 0.0 <123 ITEMS>
# Query 1: 1.14 QPS, 2.19x concurrency, ID 0x255C57D761A899A9 at byte 1782619576# This item is included in the report because it matches --limit. # Scores: V/M = 2.93# Time range: 2017-06-13T14:34:42 to 2017-06-14T09:05:56# Attribute pct total min max avg 95% stddev median # ============ === ======= ======= ======= ======= ======= ======= =======# Count 1 75972# Exec time 50 146054s 160us 20s 2s 7s 2s 1s # Lock time 94 142872s 39us 20s 2s 7s 2s 992ms # Rows sent 0 0 0 0 0 0 0 0# Rows examine 0 74.19k 1 1 1 1 0 1# Query size 0 4.05M 53 57 55.88 56.92 0.82 54.21# String: # Hosts 127.0.0.1# Users root # Query_time distribution # 1us # 10us # 100us ###################### # 1ms ## # 10ms ### # 100ms ################################## # 1s ################################################################ # 10s+ ## # Tables # SHOW TABLE STATUS LIKE 'warehouse'\G # SHOW CREATE TABLE `warehouse`\G UPDATE warehouse SET w_ytd = w_ytd + 3651 WHERE w_id = 4\G # Converted for EXPLAIN # EXPLAIN /*!50100 PARTITIONS*/select w_ytd = w_ytd + 3651 from warehouse where w_id = 4\G
[root@mxqmongodb2 bin]# ./pt-query-digest /home/mysql/db3306/log/slowlog_343306.log >/home/sa/slowlog_343306.log
[root@mxqmongodb2 bin]# ./pt-query-digest --since=24h /home/mysql/db3306/log/slowlog_343306.log >/home/sa/slowlog_343306_24.log
[root@mxqmongodb2 bin]# ./pt-query-digest --user=root --password=123456 --port=3306 --review h=172.16.16.35,D=test,t=query_report /home/mysql/db3306/log/slowlog_343306.log
mysql> select * from query_report limit 1\G*************************** 1. row ***************************checksum: 1206612749604517366fingerprint: insert into order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info) values(?+) sample: INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id, ol_quantity, ol_amount, ol_dist_info) VALUES (3730, 6, 10, 1, 6657, 10, 8, 62.41910171508789, 'N3F5fAhga7U51tlXr8AEgZdi') first_seen: 2017-06-13 14:34:42last_seen: 2017-06-14 09:05:54reviewed_by: NULL reviewed_on: NULL comments: NULL1 row in set (0.00 sec)
[root@mxqmongodb2 log]# mysqlbinlog mysql-bin.000012 >/home/sa/mysql-bin_000012.log [root@mxqmongodb2 bin]# ./pt-query-digest --type=binlog /home/sa/mysql-bin_000012.log >/home/sa/mysql-bin_000012_report.log
[root@mxqmongodb2 tpcc-mysql]# ./tpcc_start -h127.0.0.1 -P3306 -d tpcc -u root -p123456 -w 10 -c 10 -r 10 -l 3000
[root@mxqmongodb2 log]# tcpdump -s 65535 -x -nn -q -tttt -i any -c 10000 port 3306 >/home/sa/mysql.tcp.txt [root@mxqmongodb2 bin]# ./pt-query-digest --type=tcpdump /home/sa/mysql.tcp.txt >/home/sa/mysql.tcp_repot.txt
[root@mxqmongodb2 sa]# cat mysql.tcp_repot.txt # 4.2s user time, 50ms system time, 27.65M rss, 179.15M vsz # Current date: Tue Jun 20 17:08:40 2017# Hostname: mxqmongodb2 # Files: /home/sa/mysql.tcp.txt # Overall: 155 total, 3 unique, 9.76 QPS, 4.52x concurrency ______________ # Time range: 2017-06-20 17:06:19.850032 to 17:06:35.731291# Attribute total min max avg 95% stddev median # ============ ======= ======= ======= ======= ======= ======= =======# Exec time 72s 63us 2s 463ms 1s 352ms 393ms # Rows affecte 25 0 15 0.16 0.99 1.18 0# Query size 956 6 30 6.17 5.75 1.85 5.75# Warning coun 1 0 1 0.01 0 0.08 0 # Profile # Rank Query ID Response time Calls R/Call V/M Item # ==== ================== ============= ===== ====== ===== =========# 1 0x813031B8BBC3B329 69.9077 97.4% 153 0.4569 0.25 COMMIT # MISC 0xMISC 1.8904 2.6% 2 0.9452 0.0 <2 ITEMS> # Query 1: 9.63 QPS, 4.40x concurrency, ID 0x813031B8BBC3B329 at byte 10100332# This item is included in the report because it matches --limit. # Scores: V/M = 0.25# Time range: 2017-06-20 17:06:19.850032 to 17:06:35.731291# Attribute pct total min max avg 95% stddev median # ============ === ======= ======= ======= ======= ======= ======= =======# Count 98 153# Exec time 97 70s 63us 2s 457ms 1s 336ms 393ms # Rows affecte 100 25 0 15 0.16 0.99 1.19 0# Query size 96 918 6 6 6 6 0 6# Warning coun 100 1 0 1 0.01 0 0.08 0# String: # Hosts 127.0.0.1# Query_time distribution # 1us # 10us # # 100us #### # 1ms # # 10ms # # 100ms ################################################################ # 1s ########## # 10s+commit\G
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'article discute de l'utilisation de l'instruction ALTER TABLE de MySQL pour modifier les tables, notamment en ajoutant / abandon les colonnes, en renommant des tables / colonnes et en modifiant les types de données de colonne.

L'article discute de la configuration du cryptage SSL / TLS pour MySQL, y compris la génération et la vérification de certificat. Le problème principal est d'utiliser les implications de sécurité des certificats auto-signés. [Compte de caractère: 159]

L'article traite des outils de GUI MySQL populaires comme MySQL Workbench et PhpMyAdmin, en comparant leurs fonctionnalités et leur pertinence pour les débutants et les utilisateurs avancés. [159 caractères]

L'article traite des stratégies pour gérer de grands ensembles de données dans MySQL, y compris le partitionnement, la rupture, l'indexation et l'optimisation des requêtes.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

L'article discute de la suppression des tables dans MySQL en utilisant l'instruction TABLE DROP, mettant l'accent sur les précautions et les risques. Il souligne que l'action est irréversible sans sauvegardes, détaillant les méthodes de récupération et les risques potentiels de l'environnement de production.

L'article discute de l'utilisation de clés étrangères pour représenter les relations dans les bases de données, en se concentrant sur les meilleures pratiques, l'intégrité des données et les pièges communs à éviter.

L'article discute de la création d'index sur les colonnes JSON dans diverses bases de données comme PostgreSQL, MySQL et MongoDB pour améliorer les performances de la requête. Il explique la syntaxe et les avantages de l'indexation des chemins JSON spécifiques et répertorie les systèmes de base de données pris en charge.
