Sauf indication contraire, ce qui suit est basé sur Python3
Résumé
Cet article décrit comment appeler la méthode "classe parent" via Python
dans la relation d'héritage super()
, et super(Type, CurrentClass)
renvoie le proxy de la classe suivante dans CurrentClass
de MRO
;Et comment concevoir la classe Type
pour qu'elle s'initialise correctement. Python
doit être appelée pour initialiser correctement les attributs de l'instance de la classe parent, afin que le L'objet d'instance de sous-classe peut hériter de la classe parent. Attributs d'instance des objets d'instance __init__
La même chose est vraie. Lorsque vous ne pouvez pas pleinement comprendre l'héritage multiple, il est préférable de ne pas l'utiliser. L'héritage unique peut répondre à la plupart des besoins. Python
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C') D.test(self)
implémentation de la classe parent C
dans la fonction test
de la sous-classe D
. La méthode la plus directe à laquelle nous pouvons penser est probablement de référencer directement le membre de la fonction test
de l'objet de classe D
: test
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')
c = C() c.test()
test in C test in D
super([type[, object-or-type]])
Renvoyer un objet proxy qui délègue les appels de méthode à un parent ou un frère ou une sœur. classe de type. Ceci est utile pour accéder aux méthodes héritées qui ont été remplacées dans une classe. L'ordre de recherche est le même que celui utilisé par getattr() sauf que le type lui-même est ignoré.
La fonction renvoie l'objet proxy appelé par la méthode de classe parent ou de classe frère de la classe déléguée super
. type
Utilisé pour appeler les méthodes de classe parent qui ont été remplacées dans les sous-classes. L'ordre de recherche des méthodes est le même que pour les fonctions super
, sauf que la classe de paramètres getattr()
elle-même est ignorée. type
) ne peut pas être transmis explicitement. Maintenant, la fonction self
peut définir le proxy de la classe parent, car dans l'héritage simple, la sous-classe a et n'a qu'une seule classe parent, donc la classe parent est claire et nous savons parfaitement quelle méthode de classe parent est appelée : super
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')super().test() # super(C, self).test()的省略形式
est un super
, comme son nom l'indique, le class bultin class super
proxy La classe parent de la sous-classe. Dans une relation d'héritage unique, est-il facile de trouver la classe que super
représente ? C'est la seule classe parent de la sous-classe, mais dans une relation d'héritage multiple, en plus de la classe parent de la sous-classe, super
peut représente également la sous-classe. Un frère de la classe. super
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')class B(D): def test(self):print('test in B')class A(B, C):pass
est la suivante : A
object | D / \ B C \ / A
, qui c'est-à-dire que plusieurs lignes peuvent être transmises. Le chemin va de la classe A
à une classe parent, dans ce cas A
. D
de "A
classe parent " dans la classe , vous avez besoin d'un ordre de recherche et d'analyse pour le Méthode test
, pour décider d'appeler ou non la méthode test
de B,C或D
. test
proposé ci-dessus est l'ordre de résolution des méthodes. test
Profondeur d'abord
Dans les classes à l'ancienne, l'ordre de résolution des méthodes est la profondeur d'abord, avec plusieurs classes parents de gauche à droite. Python
En largeur d'abord
Dans les classes de nouveau style, l'ordre de résolution des méthodes est en largeur d'abord, avec plusieurs classes parents de gauche à droite. Python
. Dans A -> B -> C -> D -> object
, l'attribut Python
de la classe affiche l'ordre de recherche de la méthode. Vous pouvez appeler la méthode __mro__
ou citer directement mro()
pour obtenir l'ordre de recherche : __mro__
<🎜. >
output:
[<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>] (<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)
所以
a = A() a.test() # output: test in B
变化的MRO
即使是同一个类,在不同的MRO中位置的前后关系都是不同的。如以下类:
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')class B(D): def test(self):print('test in B')
类B
的继承层次结构为:
object | D / \ C B
类B
的MRO:B -> D -> object
对比类A
的MRO:A -> B -> C -> D -> object
同样的类B
,在两个不同的MRO中位置关系也是不同的。可以说,在已有的继承关系中加入新的子类,会在MRO中引入新的类,并且改变解析顺序。
那么可以想象,同样在类B
的test中通过super
调用父类方法,在不同的MRO中实际调用的方法是不同的。
如下:
class D(object): def test(self):print('test in D')class C(D): def test(self):print('test in C')super().test()class B(D): def test(self):print('test in B')super().test()class A(B, C):passb = B() b.test()print('==========') a = A() a.test()
output:
test in B test in D==========test in B test in C test in D
因为在原有的类关系中加入B
和C
的子类A
,使得在B
的test
方法中调用super
的test
方法发生了改变,原来调用的是其父类D
的test
方法,现在调用的是其兄弟类C
的test
方法。
从这里可以看出super
不总是代理子类的父类,还有可能代理其兄弟类。
因此在设计多继承关系的类体系时,要特别注意这一点。
方法super([type[, object-or-type]])
,返回的是对type
的父类或兄弟类的代理。
如果第二个参数省略,返回的super
对象是未绑定到确定的MRO
上的:
如果第二个参数是对象,那么isinstance(obj, type)
必须为True
;
如果第二个参数是类型,那么issubclass(type2, type)
必须为True
,即第二个参数类型是第一个参数类型的子类。
在super
函数的第二个参数存在时,其实现大概如以下:
def super(cls, inst): mro = inst.__class__.mro() # Always the most derived classreturn mro[mro.index(cls) + 1]
很明显,super
返回在第二个参数对应类的MRO
列表中,第一个参数type
的下一个类的代理。因此,要求第一个参数type
存在于第二个参数类的MRO
是必要的,只有第一个参数类是第二个参数所对应类的父类,才能保证。
super()
super
函数是要求有参数的,不存在无参的super
函数。在类定义中以super()
方式调用,是一种省略写法,由解释器填充必要参数。填充的第一个参数是当前类,第二个参数是self
:
super() => super(current_class, self)
所以,super()
这种写法注定只能在类定义中使用。
现在再来看上面的继承关系:
class D(object):def test(self):print('test in D')class C(D):def test(self):print('test in C')# super().test() # 与下面的写法等价super(C, self).test() # 返回self对应类的MRO中,类C的下一个类的代理class B(D):def test(self):print('test in B')# super().test() # 与下面的写法等价super(B, self).test() # 返回self对应类的MRO中,类B的下一个类的代理class A(B, C):pass
因此:
b = B() b.test() # 基于类B的MRO(B->D->object),类B中的super()代理Dprint('==========') a = A() a.test() # 基于类A的MRO(A->B->C->D->object),类B中的super()代理C
以上就是在继承关系中引入新类,改变方法解析顺序的实例。
super([type[, object-or-type]])
的第二个参数,对象和类还有一点区别:使用对象返回的是代理使用绑定方法,使用类返回的代理使用非绑定方法。
如:
b = B()super(B, b).test()super(B, B).test(b)
这两种方式得到的结果是相同的,区别在于非绑定调用与绑定调用。
普通的函数或者方法调用中,调用者肯定事先知道被调用者所需的参数,然后可以轻松的组织参数调用。但是在多继承关系中,情况有些尴尬,使用super
代理调用方法,编写类的作者并不知道最终会调用哪个类的方法,这个类都可能尚未存在。
如现在一作者编写了以下类:
class D(object):def test(self):print('test in D') class B(D):def test(self):print('test in B')super().test()
在定义类D
时,作者完全不可能知道test
方法中的super().test()
最终会调用到哪个类。
因为如果后来有人在这个类体系的基础上,引入了如下类:
class C(D):def test(self):print('test in C')super().test() class A(B, C):passa = A() a.test()
此时会发现类B
的test
方法中super().test()
调用了非原作者编写的类的方法。
这里test
方法的参数都是确定的,但是在实际生产中,可能各个类的test
方法都是不同的,如果新引入的类C
需要不同的参数:
class C(D):def test(self, param_c):print('test in C, param is', param_c)super().test() class A(B, C):passa = A() a.test()
类B
的调用方式调用类C
的test
方法肯定会失败,因为没有提供任何参数。类C
的作者是不可能去修改类B
的实现。那么,如何适应这种参数变换的需求,是在设计Python
类中需要考虑的问题。
事实上,这种参数的变换在构造方法上能体现得淋漓尽致,如果子类没有正确初始化父类,那么子类甚至不能从父类继承到需要的实例属性。
所以,Python
的类必须设计友好,才能拓展,有以下三条指导原则:
通过super()
调用的方法必须存在;
调用者和被调用者参数必须匹配;
所有对父类方法的调用都必须使用super()
super()
代理的类是不可预测的,需要匹配调用者和可能未知的调用者的参数。
固定参数
一种方法是使用位置参数固定函数签名。就像以上使用的test()
一样,其签名是固定的,只要要传递固定的参数,总是不会出错。
关键字参数
每个类的构造方法可能需要不同的参数,这时固定参数满足不了这种需求了。幸好,Python
中的关键字参数可以满足不定参数的需求。设计函数参数时,参数由关键字参数和关键字参数字典组成,在调用链中,每一个函数获取其所需的关键字参数,保留不需要的参数到**kwargs
中,传递到调用链的下一个函数,最终**kwargs
为空时,调用调用链中的最后一个函数。
示例:
class Shape(object):def __init__(self, shapename, **kwargs):self.shapename = shapenamesuper().__init__(**kwargs)class ColoredShape(Shape):def __init__(self, color, **kwargs):self.color = colorsuper().__init__(**kwargs) cs = ColoredShape(color='red', shapename='circle')
参数的剥落步骤为:
使用cs = ColoredShape(color='red', shapename='circle')
初始化ColoredShape
;
ColoredShape
的__init__
方法获取其需要的关键字参数color
,此时的kwargs
为{shapename:'circle'}
;
调用调用链中Shape
的__init__
方法,该方法获取所需关键字参数shapename
,此时kwargs
为{}
;
最后调用调用链末端objet.__init__
,此时因为kwargs
已经为空。
初始化子类传递的关键字参数尤为重要,如果少传或多传,都会导致初始化不成功。只有MRO
中每个类的方法都是用super()
来调用“父类”方法时,才能保证super()
调用链不会断掉。
上面的例子中,由于顶层父类object
总是存在__init__
方法,在任何MRO
链中也总是最后一个,因此任意的super().__init__
调用总能保证是object.__init__
结束。
但是其他自定义的方法得不到这样的保证。这时需要手动创建类似object
的顶层父类:
class Root:def draw(self):# the delegation chain stops hereassert not hasattr(super(), 'draw')class Shape(Root):def __init__(self, shapename, **kwds):self.shapename = shapenamesuper().__init__(**kwds)def draw(self):print('Drawing. Setting shape to:', self.shapename)super().draw()class ColoredShape(Shape):def __init__(self, color, **kwds):self.color = colorsuper().__init__(**kwds)def draw(self):print('Drawing. Setting color to:', self.color)super().draw() cs = ColoredShape(color='blue', shapename='square') cs.draw()
如果有新的类要加入到这个MRO
体系,新的子类也要继承Root
,这样,所有的对draw()
的调用都会经过Root
,而不会到达没有draw
方法的object
了。这种对于子类的扩展要求,应当详细注明在文档中,便于使用者阅读。这种限制与Python
所有异常都必须继承自BaseException
一样。
对于那些不友好的类:
class Moveable:def __init__(self, x, y):self.x = xself.y = ydef draw(self):print('Drawing at position:', self.x, self.y)
如果希望使用它的功能,直接将其加入到我们友好的继承体系中,会破坏原有类的友好性。
除了通过继承获得第三方功能外,还有一种称之为组合的方式,即把第三方类作为组件的方式揉入类中,使得类具有第三方的功能:
class MoveableAdapter(Root):def __init__(self, x, y, **kwds):self.movable = Moveable(x, y)super().__init__(**kwds)def draw(self):self.movable.draw()super().draw()
Moveable
被作为组件整合到适配类MoveableAdapter
中,适配类拥有了Moveable
的功能,而且是友好实现的。完全可以通过继承适配类的方式,将Moveable
的功能加入到友好的继承体系中:
class MovableColoredShape(ColoredShape, MoveableAdapter):passMovableColoredShape(color='red', shapename='triangle', x=10, y=20).draw()
Python’s super() considered super!
Python tutorial#super
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!