J'ai actuellement une copie des données Forbes des 2000 meilleures sociétés mondiales cotées en 2016 à portée de main, mais les données originales ne sont pas standardisées et doivent être traitées avant une utilisation ultérieure.
Cet article présente l'utilisation des pandas pour l'organisation des données à travers des exemples pratiques.
Comme d'habitude, permettez-moi d'abord de parler de mon environnement d'exploitation, comme suit :
windows 7, 64 bits
python 3.5
pandas version 0.19.2
Après avoir obtenu les données d'origine, examinons d'abord les données et réfléchissons à ce que nous avons besoin de résultats de données.
Voici les données brutes :
Dans cet article, nous avons besoin des résultats préliminaires suivants pour une utilisation future.
Vous pouvez voir que dans les données d'origine, les données liées à l'entreprise ("Ventes", "Profits", "Actifs", "Market_value") ne sont actuellement pas un type numérique qui peut être utilisé pour les calculs.
Le contenu original contient des symboles monétaires "$", "-", des chaînes composées de lettres pures et d'autres informations que nous considérons comme anormales. De plus, les unités de ces données ne sont pas cohérentes. Ils sont représentés par « B » (Milliard, un milliard) et « M » (Million, un million). L'unification des unités est requise avant les calculs ultérieurs.
La première idée de traitement qui me vient à l'esprit est de diviser les informations de données en milliards (« B ») et en millions (« M »), respectivement. et finalement fusionnés. Le processus est le suivant.
Chargez les données et ajoutez le nom de la colonne
import pandas as pd df_2016 = pd.read_csv('data_2016.csv', encoding='gbk',header=None)# 更新列名df_2016.columns = ['Year', 'Rank', 'Company_cn','Company_en', 'Country_en', 'Sales', 'Profits', 'Assets', 'Market_value'] print('the shape of DataFrame: ', df_2016.shape) print(df_2016.dtypes) df_2016.head(3)
Obtenez l'unité en milliards (' B' ) données
# 数据单位为 B的数据(Billion,十亿)df_2016_b = df_2016[df_2016['Sales'].str.endswith('B')] print(df_2016_b.shape) df_2016_b
Obtenir des données en millions ('M')
# 数据单位为 M的数据(Million,百万)df_2016_m = df_2016[df_2016['Sales'].str.endswith('M')] print(df_2016_m.shape) df_2016_m
Ceci La méthode est relativement simple à comprendre, mais elle sera lourde à utiliser, surtout s'il y a de nombreuses colonnes de données à traiter, cela prendra beaucoup de temps.
Je ne décrirai pas ici le traitement ultérieur. Bien sûr, vous pouvez essayer cette méthode.
Ce qui suit est une méthode légèrement plus simple.
La première étape consiste à charger les données, ce qui est la même que la méthode-1.
Ce qui suit consiste à traiter la colonne « Ventes »
La première consiste à remplacer les caractères anormaux pertinents, y compris le symbole monétaire du dollar américain « $ », la chaîne alphabétique « non défini » et « B ». Ici, nous voulons organiser uniformément les unités de données en milliards, afin que « B » puisse être remplacé directement. Et « M » nécessite davantage d'étapes de traitement.
Traitement des données contenant des millions de "M", c'est-à-dire des données se terminant par "M", l'idée est la suivante :
(1) Définissez le masque de condition de recherche
(2) Remplacez la chaîne "M" par une valeur vide
(3)用pd.to_numeric()转换为数字
(4)除以1000,转换为十亿美元,与其他行的数据一致
上面两个步骤相关的代码如下:
# 替换美元符号df_2016['Sales'] = df_2016['Sales'].str.replace('$','')# # 查看异常值,均为字母(“undefined”)# df_2016[df_2016['Sales'].str.isalpha()]# 替换异常值“undefined”为空白# df_2016['Sales'] = df_2016['Sales'].str.replace('undefined','')df_2016['Sales'] = df_2016['Sales'].str.replace('^[A-Za-z]+$','')# 替换符号十亿美元“B”为空白,数字本身代表的就是十亿美元为单位df_2016['Sales'] = df_2016['Sales'].str.replace('B','')# 处理含有百万“M”为单位的数据,即以“M”结尾的数据# 思路:# (1)设定查找条件mask;# (2)替换字符串“M”为空值# (3)用pd.to_numeric()转换为数字# (4)除以1000,转换为十亿美元,与其他行的数据一致mask = df_2016['Sales'].str.endswith('M') df_2016.loc[mask, 'Sales'] = pd.to_numeric(df_2016.loc[mask, 'Sales'].str.replace('M', ''))/1000df_2016['Sales'] = pd.to_numeric(df_2016['Sales']) print('the shape of DataFrame: ', df_2016.shape) print(df_2016.dtypes) df_2016.head(3)
用同样类似的方法处理其他列
可以看到,这个方法比第一种方法还是要方便很多。当然,这个方法针对DataFrame的每列数据都要进行相关的操作,如果列数多了,也还是比较繁琐的。
有没有更方便一点的方法呢。 答案是有的。
插播一条硬广:技术文章转发太多。文章来自微信公众号“Python数据之道”(ID:PyDataRoad)。
在Method-2的基础上,将处理方法写成更通用的数据处理函数,根据数据的结构,拓展更多的适用性,则可以比较方便的处理相关数据。
第一步还是加载数据,跟Method-1是一样的。
参考Method-2的处理过程,编写数据处理的自定义函数’pro_col’,并在Method-2的基础上拓展其他替换功能,使之适用于这四列数据(“Sales”,“Profits”,“Assets”,“Market_value”)。
函数编写的代码如下:
def pro_col(df, col): # 替换相关字符串,如有更多的替换情形,可以自行添加df[col] = df[col].str.replace('$','') df[col] = df[col].str.replace('^[A-Za-z]+$','') df[col] = df[col].str.replace('B','')# 注意这里是'-$',即以'-'结尾,而不是'-',因为有负数df[col] = df[col].str.replace('-$','') df[col] = df[col].str.replace(',','')# 处理含有百万“M”为单位的数据,即以“M”结尾的数据# 思路:# (1)设定查找条件mask;# (2)替换字符串“M”为空值# (3)用pd.to_numeric()转换为数字# (4)除以1000,转换为十亿美元,与其他行的数据一致mask = df[col].str.endswith('M') df.loc[mask, col] = pd.to_numeric(df.loc[mask, col].str.replace('M',''))/1000# 将字符型的数字转换为数字类型df[col] = pd.to_numeric(df[col])return df
针对DataFrame的每列,应用该自定义函数,进行数据处理,得到需要的结果。
pro_col(df_2016, 'Sales') pro_col(df_2016, 'Profits') pro_col(df_2016, 'Assets') pro_col(df_2016, 'Market_value') print('the shape of DataFrame: ', df_2016.shape) print(df_2016.dtypes) df_2016.head()
当然,如果DataFrame的列数特别多,可以用for循环,这样代码更简洁。代码如下:
cols = ['Sales', 'Profits', 'Assets', 'Market_value']for col in cols: pro_col(df_2016, col) print('the shape of DataFrame: ', df_2016.shape) print(df_2016.dtypes) df_2016.head()
最终处理后,获得的数据结果如下:
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!