Maison interface Web js tutoriel Explication détaillée de la déduplication de tableaux javascript et exemples d'algorithmes de tri rapide

Explication détaillée de la déduplication de tableaux javascript et exemples d'algorithmes de tri rapide

Jul 24, 2017 am 09:23 AM
javascript js 算法

Déduplication de tableau

Principe : définissez un objet obj, puis utilisez l'élément de tableau comme nom d'attribut d'obj, et utilisez si le nom d'attribut est répété pour déterminer la duplication


var unique = function(arr){
  let obj = {};
  let newArr = [];
  arr.forEach(function(x){
    if(!obj[x]){ //如果对象中没有该元素对应的属性
      obj[x] = true;
      newArr.push(x);
    }
  });
  return newArr;
}
Copier après la connexion

Utilisez l'algorithme de tri rapide pour trier le tableau

Cela inclut deux effets, l'un consiste à utiliser les caractéristiques de tri rapide pour réaliser la déduplication Tri rapide, l'autre est un tri rapide sans suppression de poids.

Principe : obtenez le tableau cible, sélectionnez un élément comme drapeau, parcourez les éléments restants, placez les éléments plus grands que le drapeau à droite et plus petits que le drapeau à gauche.

Remarque particulière : il existe des éléments égaux au bit de drapeau. Si vous stockez des éléments égaux, la déduplication sera réalisée. Si vous les stockez, ils ne seront pas dédupliqués.


var quickSort = function(arr){
  if(arr.length <= 1){
    return arr;
  }
  //定义一个左数组,定义一个右数组
  let leftArr = [];
  let rightArr = [];
  //选定一个参照值
  let tag = arr[0];
  /*
   * 使用如下方式判断,会把重复元素去掉,就实现了快排的同时去重
   */
  for(let i = 0; i < arr.length; i++){
    if(arr[i] < tag){ //将比tag小的元素放在左数组中
      leftArr.push(arr[i]);
    }
    if(arr[i] > tag){ //将比tag大的元素放在右数组中
      rightArr.push(arr[i]);
    }
  }
  /*
   * 使用如下方式就是使用快排进行排序,不去重
   */
  for(let i = 1; i < arr.length; i++){
    if(arr[i] < tag){ //将比tag小的元素放在左数组中
      leftArr.push(arr[i]);
    }else{ //将比tag大的元素放在右数组中
      rightArr.push(arr[i]);
    }
  }
  //递归调用
  return [].concat(quickSort(leftArr),[tag],quickSort(rightArr));
}
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

CLIP-BEVFormer : superviser explicitement la structure BEVFormer pour améliorer les performances de détection à longue traîne CLIP-BEVFormer : superviser explicitement la structure BEVFormer pour améliorer les performances de détection à longue traîne Mar 26, 2024 pm 12:41 PM

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Implémentation d'algorithmes d'apprentissage automatique en C++ : défis et solutions courants Jun 03, 2024 pm 01:25 PM

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Recommandé : Excellent projet de détection et de reconnaissance des visages open source JS Recommandé : Excellent projet de détection et de reconnaissance des visages open source JS Apr 03, 2024 am 11:55 AM

La technologie de détection et de reconnaissance des visages est déjà une technologie relativement mature et largement utilisée. Actuellement, le langage d'application Internet le plus utilisé est JS. La mise en œuvre de la détection et de la reconnaissance faciale sur le front-end Web présente des avantages et des inconvénients par rapport à la reconnaissance faciale back-end. Les avantages incluent la réduction de l'interaction réseau et de la reconnaissance en temps réel, ce qui réduit considérablement le temps d'attente des utilisateurs et améliore l'expérience utilisateur. Les inconvénients sont les suivants : il est limité par la taille du modèle et la précision est également limitée ; Comment utiliser js pour implémenter la détection de visage sur le web ? Afin de mettre en œuvre la reconnaissance faciale sur le Web, vous devez être familier avec les langages et technologies de programmation associés, tels que JavaScript, HTML, CSS, WebRTC, etc. Dans le même temps, vous devez également maîtriser les technologies pertinentes de vision par ordinateur et d’intelligence artificielle. Il convient de noter qu'en raison de la conception du côté Web

Explorez les principes sous-jacents et la sélection d'algorithmes de la fonction de tri C++ Explorez les principes sous-jacents et la sélection d'algorithmes de la fonction de tri C++ Apr 02, 2024 pm 05:36 PM

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

Algorithme de détection amélioré : pour la détection de cibles dans des images de télédétection optique haute résolution Algorithme de détection amélioré : pour la détection de cibles dans des images de télédétection optique haute résolution Jun 06, 2024 pm 12:33 PM

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

L'intelligence artificielle peut-elle prédire la criminalité ? Explorez les capacités de CrimeGPT L'intelligence artificielle peut-elle prédire la criminalité ? Explorez les capacités de CrimeGPT Mar 22, 2024 pm 10:10 PM

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.

Application d'algorithmes dans la construction de 58 plateformes de portraits Application d'algorithmes dans la construction de 58 plateformes de portraits May 09, 2024 am 09:01 AM

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

Analyse d'algorithme PHP : méthode efficace pour trouver les nombres manquants dans un tableau Analyse d'algorithme PHP : méthode efficace pour trouver les nombres manquants dans un tableau Mar 02, 2024 am 08:39 AM

Analyse d'algorithme PHP : Une méthode efficace pour trouver les nombres manquants dans un tableau. Dans le processus de développement d'applications PHP, nous rencontrons souvent des situations où nous devons trouver des nombres manquants dans un tableau. Cette situation est très courante dans le traitement des données et la conception d'algorithmes, nous devons donc maîtriser des algorithmes de recherche efficaces pour résoudre ce problème. Cet article présentera une méthode efficace pour trouver les nombres manquants dans un tableau et joindra des exemples de code PHP spécifiques. Description du problème Supposons que nous ayons un tableau contenant des nombres entiers compris entre 1 et 100, mais qu'il manque un nombre. Nous devons concevoir un

See all articles