Maison > développement back-end > tutoriel php > Principe de la table de hachage PHP

Principe de la table de hachage PHP

炎欲天舞
Libérer: 2023-03-15 12:54:02
original
1763 Les gens l'ont consulté

Introduction

Les tables de hachage sont utilisées dans presque tous les programmes C. Étant donné que le langage C autorise uniquement l'utilisation d'entiers comme noms de clé des tableaux, PHP a conçu une table de hachage pour mapper les noms de clé de chaîne dans un tableau de taille limitée via un algorithme de hachage. Cela provoquera inévitablement des collisions, et PHP utilise une liste chaînée pour résoudre ce problème.

Il existe de nombreuses façons d'implémenter des tables de hachage, dont aucune n'est parfaite. Chaque conception se concentre sur un objectif particulier, certaines réduisent l'utilisation du processeur, certaines utilisent la mémoire de manière plus rationnelle et certaines peuvent prendre en charge l'expansion au niveau des threads.

La raison pour laquelle il existe une diversité dans les façons d'implémenter les tables de hachage est que chaque méthode d'implémentation ne peut s'améliorer que sur son propre objectif, mais ne peut pas tout couvrir.

Structure des données

Avant de commencer l'introduction, nous devons déclarer quelque chose à l'avance :

Le nom de clé de la table de hachage peut être une chaîne ou un entier. Lorsqu'il s'agit d'une chaîne, nous déclarons le type comme zend_string ; lorsqu'il s'agit d'un entier, nous déclarons le type comme zend_ulong.

L'ordre de la table de hachage suit l'ordre d'insertion des éléments dans la table.

La capacité de la table de hachage est automatiquement étendue et réduite.

En interne, la capacité d'une table de hachage est toujours un multiple de 2.

Chaque élément de la table de hachage doit être une donnée de type zval.

Voici la structure de HashTable :

PHP

struct _zend_array {  
    zend_refcounted_h gc;
    union {
        struct {
            ZEND_ENDIAN_LOHI_4(
                zend_uchar    flags,
                zend_uchar    nApplyCount,
                zend_uchar    nIteratorsCount,
                zend_uchar    reserve)
        } v;
        uint32_t flags;
    } u;
    uint32_t          nTableMask;
    Bucket           *arData;
    uint32_t          nNumUsed;
    uint32_t          nNumOfElements;
    uint32_t          nTableSize;
    uint32_t          nInternalPointer;
    zend_long         nNextFreeElement;
    dtor_func_t       pDestructor;
};
Copier après la connexion

Cette structure occupe 56 octets.

Le champ le plus important est arData, qui est un pointeur vers des données de type Bucket. La structure Bucket est définie comme suit :

typedef struct _Bucket {  
    zval              val;
    zend_ulong        h;                /* hash value (or numeric index)   */
    zend_string      *key;              /* string key or NULL for numerics */
} Bucket;
Copier après la connexion

Les pointeurs ne sont plus utilisés. dans Bucket Un pointeur vers des données de type zval, utilisant plutôt les données elles-mêmes directement. Parce qu'en PHP7, zval n'utilise plus l'allocation de tas, car les données qui nécessitent une allocation de tas seront stockées sous forme de pointeur dans la structure zval. (comme les chaînes PHP).

Voici la structure des arData stockées en mémoire :

Nous remarquons que tous les Buckets sont stockés dans l'ordre.

Insérer des éléments

PHP garantira que les éléments du tableau sont stockés dans l'ordre d'insertion. De cette façon, lorsque vous utilisez foreach pour boucler le tableau, il peut être parcouru dans l'ordre d'insertion. Supposons que nous ayons un tableau comme celui-ci :

$a = [9 => "foo", 2 => 42, []];
var_dump($a);
 
array(3) {  
    [9]=>
    string(3) "foo"
    [2]=>
    int(42)
    [10]=>
    array(0) {
    }
}
Copier après la connexion

Toutes les données sont adjacentes en mémoire.

En faisant cela, la logique de gestion des itérateurs de la table de hachage devient assez simple. Parcourez simplement le tableau arData directement. Le parcours des données adjacentes en mémoire utilisera grandement le cache du processeur. Étant donné que le cache du processeur est capable de lire l'intégralité de arData , l'accès à chaque élément se fera au niveau de la microseconde.

size_t i;  
Bucket p;  
zval val;
 
for (i=0; i < ht->nTableSize; i++) {  
    p   = ht->arData[i];
    val = p.val;
    /* do something with val */
}
Copier après la connexion

Comme vous pouvez le voir, les données sont stockées dans arData de manière séquentielle. Afin de mettre en œuvre une telle structure, nous devons connaître l’emplacement du prochain nœud disponible. Cette position est enregistrée dans le champ nNumUsed de la structure du tableau.

Chaque fois que de nouvelles données sont ajoutées, ht->nNumUsed++ sera exécuté après l'avoir enregistrée. Lorsque la valeur nNumUsed atteint la valeur maximale de tous les éléments de la table de hachage (nNumOfElements), l'algorithme de « compression ou expansion » sera déclenché.

Ce qui suit est un exemple simple d'implémentation d'insertion d'éléments dans une table de hachage :

idx = ht->nNumUsed++; /* take the next avalaible slot number */  
ht->nNumOfElements++; /* increment number of elements */  
/* ... */
p = ht->arData + idx; /* Get the bucket in that slot from arData */  
p->key = key; /* Affect it the key we want to insert at */  
/* ... */
p->h = h = ZSTR_H(key); /* save the hash of the current key into the bucket */  
ZVAL_COPY_VALUE(&p->val, pData); /* Copy the value into the bucket&#39;s value : add operation */
Copier après la connexion

On peut voir que lors de l'insertion, il ne sera inséré qu'au niveau fin du tableau arData. Les nœuds qui ont été supprimés ne seront pas remplis.

Supprimer l'élément

Lorsqu'un élément de la table de hachage est supprimé, la table de hachage ne mettra pas automatiquement à l'échelle l'espace de données réellement stocké, mais définira un zval avec une valeur UNDEF. le nœud actuel a été supprimé.

Comme le montre la figure ci-dessous :

Par conséquent, lors de la boucle d'éléments de tableau, vous devez spécialement juger le nœud vide :

size_t i;  
Bucket p;  
zval val;
 
for (i=0; i < ht->nTableSize; i++) {  
    p   = ht->arData[i];
    val = p.val;
    if (Z_TYPE(val) == IS_UNDEF) { /* empty hole ? */
        continue; /* skip it */
    }
    /* do something with val */
}
Copier après la connexion

Même s'il s'agit d'un dix Avec une énorme table de hachage, parcourir chaque nœud et sauter ces nœuds supprimés est également très rapide, grâce au fait que les nœuds d'arData sont toujours stockés les uns à côté des autres en mémoire.

Élément de localisation de hachage

Lorsque nous obtenons le nom de clé d'une chaîne, nous devons utiliser l'algorithme de hachage pour calculer la valeur hachée et pouvoir la trouver via l'index de valeur de hachage dans arData l'élément correspondant.

Nous ne pouvons pas utiliser directement la valeur hachée comme index du tableau arData, car il n'y a aucune garantie que les éléments seront stockés dans l'ordre d'insertion.

Par exemple : si le nom de clé que j'insère est d'abord foo, puis bar, en supposant que le résultat haché de foo est 5 et que le résultat haché de bar est 3. Si nous stockons foo dans arData[5] et bar dans arData[3], cela signifie que l'élément bar doit être devant l'élément foo, ce qui est exactement l'inverse de l'ordre dans lequel nous l'avons inséré.

所以,当我们通过算法哈希了键名后,我们需要一张 转换表,转换表保存了哈希后的结果与实际存储的节点的映射关系。

这里在设计的时候取了个巧:将转换表存储以 arData 起始指针为起点做镜面映射存储。这样,我们不需要额外的空间存储,在分配 arData 空间的同时也分配了转换表。

以下是有8个元素的哈希表 + 转换表的数据结构:

现在,当我们要访问 foo 所指的元素时,通过哈希算法得到值后按照哈希表分配的元素大小做取模,就能得到我们在转换表中存储的节点索引值。

如我们所见,转换表中的节点的索引与数组数据元素的节点索引是相反数的关系,nTableMask 等于哈希表大小的负数值,通过取模我们就能得到0到-7之间的数,从而定位到我们所需元素所在的索引值。综上,我们为 arData 分配存储空间时,需要使用 tablesize * sizeof(bucket) + tablesize * sizeof(uint32) 的计算方式计算存储空间大小。

在源码里也清晰的划分了两个区域:

#define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t))
#define HT_DATA_SIZE(nTableSize) ((size_t)(nTableSize) * sizeof(Bucket))
#define HT_SIZE_EX(nTableSize, nTableMask) (HT_DATA_SIZE((nTableSize)) + HT_HASH_SIZE((nTableMask)))
#define HT_SIZE(ht) HT_SIZE_EX((ht)->nTableSize, (ht)->nTableMask)
 
Bucket *arData;  
arData = emalloc(HT_SIZE(ht)); /* now alloc this */
Copier après la connexion

我们将宏替换的结果展开:

(((size_t)(((ht)->nTableSize)) * sizeof(Bucket)) + (((size_t)(uint32_t)-(int32_t)(((ht)->nTableMask))) * sizeof(uint32_t)))
Copier après la connexion

碰撞冲突

接下来我们看看如何解决哈希表的碰撞冲突问题。哈希表的键名可能会被哈希到同一个节点。所以,当我们访问到转换后的节点,我们需要对比键名是否我们查找的。如果不是,我们将通过 zval.u2.next 字段读取链表上的下一个数据。

注意这里的链表结构并没像传统链表一样在在内存中分散存储。我们直接读取 arData 整个数组,而不是通过堆(heap)获取内存地址分散的指针。

这是 PHP7 性能提升的一个重要点。数据局部性让 CPU 不必经常访问缓慢的主存储,而是直接从 CPU 的 L1 缓存中读取到所有的数据。

所以,我们看到向哈希表添加一个元素是这样操作的:

    idx = ht->nNumUsed++;
    ht->nNumOfElements++;
    if (ht->nInternalPointer == HT_INVALID_IDX) {
        ht->nInternalPointer = idx;
    }
    zend_hash_iterators_update(ht, HT_INVALID_IDX, idx);
    p = ht->arData + idx;
    p->key = key;
    if (!ZSTR_IS_INTERNED(key)) {
        zend_string_addref(key);
        ht->u.flags &= ~HASH_FLAG_STATIC_KEYS;
        zend_string_hash_val(key);
    }
    p->h = h = ZSTR_H(key);
    ZVAL_COPY_VALUE(&p->val, pData);
    nIndex = h | ht->nTableMask;
    Z_NEXT(p->val) = HT_HASH(ht, nIndex);
    HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx);
Copier après la connexion

同样的规则也适用于删除元素:

#define HT_HASH_TO_BUCKET_EX(data, idx) ((data) + (idx))
#define HT_HASH_TO_BUCKET(ht, idx) HT_HASH_TO_BUCKET_EX((ht)->arData, idx)
 
h = zend_string_hash_val(key); /* get the hash from the key (assuming string key here) */  
nIndex = h | ht->nTableMask; /* get the translation table index */
 
idx = HT_HASH(ht, nIndex); /* Get the slot corresponding to that translation index */  
while (idx != HT_INVALID_IDX) { /* If there is a corresponding slot */  
    p = HT_HASH_TO_BUCKET(ht, idx); /* Get the bucket from that slot */
    if ((p->key == key) || /* Is it the right bucket ? same key pointer ? */
        (p->h == h && /* ... or same hash */
         p->key && /* and a key (string key based) */
         ZSTR_LEN(p->key) == ZSTR_LEN(key) && /* and same key length */
         memcmp(ZSTR_VAL(p->key), ZSTR_VAL(key), ZSTR_LEN(key)) == 0)) { /* and same key content ? */
        _zend_hash_del_el_ex(ht, idx, p, prev); /* that&#39;s us ! delete us */
        return SUCCESS;
    }
    prev = p;
    idx = Z_NEXT(p->val); /* get the next corresponding slot from current one */
}
return FAILURE;
Copier après la connexion

转换表和哈希表的初始化

HT_INVALID_IDX 作为一个特殊的标记,在转换表中表示:对应的数据节点没有有效的数据,直接跳过。

哈希表之所以能极大地减少那些创建时就是空值的数组的开销,得益于他的两步的初始化过程。当新的哈希表被创建时,我们只创建两个转换表节点,并且都赋予 HT_INVALID_IDX 标记。

#define HT_MIN_MASK ((uint32_t) -2)
#define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t))
#define HT_SET_DATA_ADDR(ht, ptr) do { (ht)->arData = (Bucket*)(((char*)(ptr)) + HT_HASH_SIZE((ht)->nTableMask)); } while (0)
 
static const uint32_t uninitialized_bucket[-HT_MIN_MASK] = {HT_INVALID_IDX, HT_INVALID_IDX};
 
/* hash lazy init */
ZEND_API void ZEND_FASTCALL _zend_hash_init(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC)  
{
    /* ... */
    ht->nTableSize = zend_hash_check_size(nSize);
    ht->nTableMask = HT_MIN_MASK;
    HT_SET_DATA_ADDR(ht, &uninitialized_bucket);
    ht->nNumUsed = 0;
    ht->nNumOfElements = 0;
}
Copier après la connexion

注意到这里不需要使用堆分配内存,而是使用静态的内存区域,这样更轻量。

然后,当第一个元素插入时,我们会完整的初始化哈希表,这时我们才创建所需的转换表的空间(如果不确定数组大小,则默认是8个元素)。这时,我们将使用堆分配内存。

#define HT_HASH_EX(data, idx) ((uint32_t*)(data))[(int32_t)(idx)]
#define HT_HASH(ht, idx) HT_HASH_EX((ht)->arData, idx)
 
(ht)->nTableMask = -(ht)->nTableSize;
HT_SET_DATA_ADDR(ht, pemalloc(HT_SIZE(ht), (ht)->u.flags & HASH_FLAG_PERSISTENT));  
memset(&HT_HASH(ht, (ht)->nTableMask), HT_INVALID_IDX, HT_HASH_SIZE((ht)->nTableMask))
Copier après la connexion

HT_HASH 宏能够使用负数偏移量访问转换表中的节点。哈希表的掩码总是负数,因为转换表的节点的索引值是 arData 数组的相反数。这才是C语言的编程之美:你可以创建无数的节点,并且不需要关心内存访问的性能问题。

以下是一个延迟初始化的哈希表结构:

哈希表的碎片化、重组和压缩

当哈希表填充满并且还需要插入元素时,哈希表必须重新计算自身的大小。哈希表的大小总是成倍增长。当对哈希表扩容时,我们会预分配 arBucket 类型的C数组,并且向空的节点中存入值为 UNDEF 的 zval。在节点插入数据之前,这里会浪费 (new_size – old_size) * sizeof(Bucket) 字节的空间。

如果一个有1024个节点的哈希表,再添加元素时,哈希表将会扩容到2048个节点,其中1023个节点都是空节点,这将消耗 1023 * 32 bytes = 32KB 的空间。这是 PHP 哈希表实现方式的缺陷,因为没有完美的解决方案。

编程就是一个不断设计妥协式的解决方案的过程。在底层编程中,就是对 CPU 还是内存的一次取舍。

哈希表可能全是 UNDEF 的节点。当我们插入许多元素后,又删除了它们,哈希表就会碎片化。因为我们永远不会向 arData 中间节点插入数据,这样我们就可能会看到很多 UNDEF 节点。

举个例子来说:

重组 arData 可以整合碎片化的数组元素。当哈希表需要被重组时,首先它会自我压缩。当它压缩之后,会计算是否需要扩容,如果需要的话,同样是成倍扩容。如果不需要,数据会被重新分配到已有的节点中。这个算法不会在每次元素被删除时运行,因为需要消耗大量的 CPU 计算。

以下是压缩后的数组:

压缩算法会遍历所有 arData 里的元素并且替换原来有值的节点为 UNDEF。如下所示:

Bucket *p;  
uint32_t nIndex, i;  
HT_HASH_RESET(ht);  
i = 0;  
p = ht->arData;
 
do {  
    if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) {
        uint32_t j = i;
        Bucket *q = p;
        while (++i < ht->nNumUsed) {
            p++;
            if (EXPECTED(Z_TYPE_INFO(p->val) != IS_UNDEF)) {
                ZVAL_COPY_VALUE(&q->val, &p->val);
                q->h = p->h;
                nIndex = q->h | ht->nTableMask;
                q->key = p->key;
                Z_NEXT(q->val) = HT_HASH(ht, nIndex);
                HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(j);
                if (UNEXPECTED(ht->nInternalPointer == i)) {
                    ht->nInternalPointer = j;
                }
                q++;
                j++;
            }
        }
        ht->nNumUsed = j;
        break;
    }
    nIndex = p->h | ht->nTableMask;
    Z_NEXT(p->val) = HT_HASH(ht, nIndex);
    HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(i);
    p++;
} while (++i < ht->nNumUsed);
Copier après la connexion

结语

到此,PHP 哈希表的实现基础已经介绍完毕,关于哈希表还有一些进阶的内容没有翻译,因为接下来我准备继续分享 PHP 内核的其他知识点,关于哈希表感兴趣的同学可以移步到原文。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal