Maison développement back-end Tutoriel Python Une introduction au multi-threading en Python

Une introduction au multi-threading en Python

Aug 23, 2017 am 11:44 AM
python threading 入门

Le multithreading peut être simplement compris comme l'exécution de plusieurs tâches en même temps. Cet article partagera avec vous des exemples détaillés de didacticiels Python multi-threading pour débutants. Les amis intéressés peuvent apprendre ensemble

1.1 Qu'est-ce que le multi-threading

Le multithreading peut simplement être compris comme l'exécution de plusieurs tâches en même temps.

Le multi-processus et le multi-threading peuvent effectuer plusieurs tâches, et les threads font partie du processus. La caractéristique des threads est qu'ils peuvent partager de la mémoire et des variables entre les threads et consommer moins de ressources (cependant, dans l'environnement Unix, la différence de consommation de planification des ressources entre multi-processus et multi-thread n'est pas évidente, et la planification Unix est plus rapide ). L'inconvénient est la synchronisation et l'accélération entre les threads. Le verrouillage est plus gênant.

1.2 Ajouter un fil de discussion

Module d'importation


import threading
Copier après la connexion
Numéro obtenu de fils de discussion activés


threading.active_count()
Copier après la connexion
Afficher toutes les informations sur les fils de discussion


threading.enumerate()
Copier après la connexion
Afficher les fils de discussion en cours d'exécution


threading.current_thread()
Copier après la connexion
Ajouter un fil de discussion,

reçoit le paramètre target pour représenter la tâche à accomplir par ce fil de discussion, vous devez le définir vous-même threading.Thread()


def thread_job():
  print('This is a thread of %s' % threading.current_thread())
def main():
  thread = threading.Thread(target=thread_job,)  # 定义线程 
  thread.start() # 让线程开始工作
  if __name__ == '__main__':
  main()
Copier après la connexion

Fonction de jointure 1.3

Étant donné que les threads s'exécutent en même temps, l'utilisation de la fonction de jointure permet au fil pour terminer l'étape suivante avant de passer à l'opération suivante, c'est-à-dire bloquer. Le thread appelant attend que toutes les tâches de la file d'attente aient été traitées.


import threading
import time
def thread_job():
  print('T1 start\n')
  for i in range(10):
    time.sleep(0.1)
  print('T1 finish\n')
def T2_job():
  print('T2 start\n')
  print('T2 finish\n')
def main():
  added_thread=threading.Thread(target=thread_job,name='T1')
  thread2=threading.Thread(target=T2_job,name='T2')
  added_thread.start()
  #added_thread.join()
  thread2.start()
  #thread2.join()
  print('all done\n')
if __name__=='__main__':
   main()
Copier après la connexion
L'exemple est présenté ci-dessus Lorsque la fonction de jointure n'est pas utilisée, le résultat est le suivant :

<🎜. >Lorsque la fonction de jointure est exécutée, T2 ne sera exécuté qu'une fois que T1 aura fini de s'exécuter, puis exécutera print (« tout est terminé »)

1.4 File d'attente pour stocker les résultats du processus la file d'attente est une implémentation de file d'attente thread-safe (FIFO) dans la bibliothèque standard python, fournissant un premier arrivé méthode du premier sorti adaptée à la programmation multithread Les structures de données, à savoir les files d'attente, sont utilisées pour transférer des informations entre les threads producteur et consommateur

(1) File d'attente FIFO de base


maxsize est un entier, indiquant la limite supérieure du nombre de données pouvant être stockées dans la file d'attente. Lorsque la limite supérieure est atteinte, l'insertion provoquera un blocage jusqu'à ce que les données de la file d'attente soient consommées. est inférieur ou égal à 0, il n'y a pas de limite sur la taille de la file d'attente
 class queue.Queue(maxsize=0)
Copier après la connexion

(2) file d'attente LIFO dernier entré, premier sorti


( 3) File d'attente prioritaire
class queue.LifoQueue(maxsize=0)
Copier après la connexion


Le code dans la vidéo n'est pas très clair
class queue.PriorityQueue(maxsize=0)
Copier après la connexion


Le le résultat en cours d'exécution est le suivant
import threading
import time
from queue import Queue
def job(l,q):
  for i in range(len(l)):
    l[i]=l[i]**2
  q.put(l)
def multithreading():
  q=Queue()
  threads=[]
  data=[[1,2,3],[3,4,5],[4,5,6],[5,6,7]]
  for i in range(4):
    t=threading.Thread(target=job,args=(data[i],q))
    t.start()
    threads.append(t)
  for thread in threads:
    thread.join()
  results=[]
  for _ in range(4):
    results.append(q.get())
  print(results)
if __name__==&#39;__main__&#39;:
   multithreading()
Copier après la connexion

1.5 GIL peut ne pas être efficace


Global Interpreter Lock, python est exécuté par le contrôle de la machine virtuelle python (également connu sous le nom de boucle principale de l'interpréteur), GIL contrôle l'accès à la machine virtuelle python, garantissant qu'un seul thread est en cours d'exécution dans l'interpréteur à tout moment. Dans un environnement multithread, la machine virtuelle python s'exécute de la manière suivante :

1. Définissez GIL

2. Basculez vers un thread pour exécuter

3. :

a. Spécifiez le nombre d'instructions de bytecode, ou

b. Le thread abandonne activement le contrôle (time.sleep(0) peut être appelé)

4. Définissez le fil pour l'état de veille

5. Déverrouillez GIL

6. Répétez 1-5

Lors de l'appel de code externe (tel que les fonctions d'extension C/C++), le GIL sera verrouillé jusqu'à la fin de cette fonction (puisqu'aucun bytecode python n'est exécuté pendant cette période, aucun changement de thread ne sera effectué).

Ce qui suit est l'exemple de code dans la vidéo. Il agrandit un nombre de 4 fois, le divise en méthode normale et l'attribue à 4 threads. On constate que la consommation de temps n'est en réalité pas très différente.


Le résultat en cours d'exécution est :
import threading
from queue import Queue
import copy
import time
def job(l, q):
  res = sum(l)
  q.put(res)
def multithreading(l):
  q = Queue()
  threads = []
  for i in range(4):
    t = threading.Thread(target=job, args=(copy.copy(l), q), name=&#39;T%i&#39; % i)
    t.start()
    threads.append(t)
  [t.join() for t in threads]
  total = 0
  for _ in range(4):
    total += q.get()
  print(total)
def normal(l):
  total = sum(l)
  print(total)
if __name__ == &#39;__main__&#39;:
  l = list(range(1000000))
  s_t = time.time()
  normal(l*4)
  print(&#39;normal: &#39;,time.time()-s_t)
  s_t = time.time()
  multithreading(l)
  print(&#39;multithreading: &#39;, time.time()-s_t)
Copier après la connexion

1.6 线程锁 Lock

如果线程1得到了结果,想要让线程2继续使用1的结果进行处理,则需要对1lock,等到1执行完,再开始执行线程2。一般来说对share memory即对共享内存进行加工处理时会用到lock。


import threading
def job1():
  global A, lock #全局变量
  lock.acquire() #开始lock
  for i in range(10):
    A += 1
    print(&#39;job1&#39;, A)
  lock.release() #释放
def job2(): 
  global A, lock
  lock.acquire()
  for i in range(10):
    A += 10
    print(&#39;job2&#39;, A)
  lock.release()
if __name__ == &#39;__main__&#39;:
  lock = threading.Lock()
  A = 0
  t1 = threading.Thread(target=job1)
  t2 = threading.Thread(target=job2)
  t1.start()
  t2.start()
  t1.join()
  t2.join()
Copier après la connexion

运行结果如下所示:

总结

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

PHP et Python: une plongée profonde dans leur histoire PHP et Python: une plongée profonde dans leur histoire Apr 18, 2025 am 12:25 AM

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

Comment exécuter des programmes dans Terminal Vscode Comment exécuter des programmes dans Terminal Vscode Apr 15, 2025 pm 06:42 PM

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

See all articles