Maison développement back-end Tutoriel Python Une introduction au multi-threading en Python

Une introduction au multi-threading en Python

Aug 23, 2017 am 11:44 AM
python threading 入门

Le multithreading peut être simplement compris comme l'exécution de plusieurs tâches en même temps. Cet article partagera avec vous des exemples détaillés de didacticiels Python multi-threading pour débutants. Les amis intéressés peuvent apprendre ensemble

1.1 Qu'est-ce que le multi-threading

Le multithreading peut simplement être compris comme l'exécution de plusieurs tâches en même temps.

Le multi-processus et le multi-threading peuvent effectuer plusieurs tâches, et les threads font partie du processus. La caractéristique des threads est qu'ils peuvent partager de la mémoire et des variables entre les threads et consommer moins de ressources (cependant, dans l'environnement Unix, la différence de consommation de planification des ressources entre multi-processus et multi-thread n'est pas évidente, et la planification Unix est plus rapide ). L'inconvénient est la synchronisation et l'accélération entre les threads. Le verrouillage est plus gênant.

1.2 Ajouter un fil de discussion

Module d'importation


import threading
Copier après la connexion
Numéro obtenu de fils de discussion activés


threading.active_count()
Copier après la connexion
Afficher toutes les informations sur les fils de discussion


threading.enumerate()
Copier après la connexion
Afficher les fils de discussion en cours d'exécution


threading.current_thread()
Copier après la connexion
Ajouter un fil de discussion,

reçoit le paramètre target pour représenter la tâche à accomplir par ce fil de discussion, vous devez le définir vous-même threading.Thread()


def thread_job():
  print('This is a thread of %s' % threading.current_thread())
def main():
  thread = threading.Thread(target=thread_job,)  # 定义线程 
  thread.start() # 让线程开始工作
  if __name__ == '__main__':
  main()
Copier après la connexion

Fonction de jointure 1.3

Étant donné que les threads s'exécutent en même temps, l'utilisation de la fonction de jointure permet au fil pour terminer l'étape suivante avant de passer à l'opération suivante, c'est-à-dire bloquer. Le thread appelant attend que toutes les tâches de la file d'attente aient été traitées.


import threading
import time
def thread_job():
  print('T1 start\n')
  for i in range(10):
    time.sleep(0.1)
  print('T1 finish\n')
def T2_job():
  print('T2 start\n')
  print('T2 finish\n')
def main():
  added_thread=threading.Thread(target=thread_job,name='T1')
  thread2=threading.Thread(target=T2_job,name='T2')
  added_thread.start()
  #added_thread.join()
  thread2.start()
  #thread2.join()
  print('all done\n')
if __name__=='__main__':
   main()
Copier après la connexion
L'exemple est présenté ci-dessus Lorsque la fonction de jointure n'est pas utilisée, le résultat est le suivant :

<🎜. >Lorsque la fonction de jointure est exécutée, T2 ne sera exécuté qu'une fois que T1 aura fini de s'exécuter, puis exécutera print (« tout est terminé »)

1.4 File d'attente pour stocker les résultats du processus la file d'attente est une implémentation de file d'attente thread-safe (FIFO) dans la bibliothèque standard python, fournissant un premier arrivé méthode du premier sorti adaptée à la programmation multithread Les structures de données, à savoir les files d'attente, sont utilisées pour transférer des informations entre les threads producteur et consommateur

(1) File d'attente FIFO de base


maxsize est un entier, indiquant la limite supérieure du nombre de données pouvant être stockées dans la file d'attente. Lorsque la limite supérieure est atteinte, l'insertion provoquera un blocage jusqu'à ce que les données de la file d'attente soient consommées. est inférieur ou égal à 0, il n'y a pas de limite sur la taille de la file d'attente
 class queue.Queue(maxsize=0)
Copier après la connexion

(2) file d'attente LIFO dernier entré, premier sorti


( 3) File d'attente prioritaire
class queue.LifoQueue(maxsize=0)
Copier après la connexion


Le code dans la vidéo n'est pas très clair
class queue.PriorityQueue(maxsize=0)
Copier après la connexion


Le le résultat en cours d'exécution est le suivant
import threading
import time
from queue import Queue
def job(l,q):
  for i in range(len(l)):
    l[i]=l[i]**2
  q.put(l)
def multithreading():
  q=Queue()
  threads=[]
  data=[[1,2,3],[3,4,5],[4,5,6],[5,6,7]]
  for i in range(4):
    t=threading.Thread(target=job,args=(data[i],q))
    t.start()
    threads.append(t)
  for thread in threads:
    thread.join()
  results=[]
  for _ in range(4):
    results.append(q.get())
  print(results)
if __name__==&#39;__main__&#39;:
   multithreading()
Copier après la connexion

1.5 GIL peut ne pas être efficace


Global Interpreter Lock, python est exécuté par le contrôle de la machine virtuelle python (également connu sous le nom de boucle principale de l'interpréteur), GIL contrôle l'accès à la machine virtuelle python, garantissant qu'un seul thread est en cours d'exécution dans l'interpréteur à tout moment. Dans un environnement multithread, la machine virtuelle python s'exécute de la manière suivante :

1. Définissez GIL

2. Basculez vers un thread pour exécuter

3. :

a. Spécifiez le nombre d'instructions de bytecode, ou

b. Le thread abandonne activement le contrôle (time.sleep(0) peut être appelé)

4. Définissez le fil pour l'état de veille

5. Déverrouillez GIL

6. Répétez 1-5

Lors de l'appel de code externe (tel que les fonctions d'extension C/C++), le GIL sera verrouillé jusqu'à la fin de cette fonction (puisqu'aucun bytecode python n'est exécuté pendant cette période, aucun changement de thread ne sera effectué).

Ce qui suit est l'exemple de code dans la vidéo. Il agrandit un nombre de 4 fois, le divise en méthode normale et l'attribue à 4 threads. On constate que la consommation de temps n'est en réalité pas très différente.


Le résultat en cours d'exécution est :
import threading
from queue import Queue
import copy
import time
def job(l, q):
  res = sum(l)
  q.put(res)
def multithreading(l):
  q = Queue()
  threads = []
  for i in range(4):
    t = threading.Thread(target=job, args=(copy.copy(l), q), name=&#39;T%i&#39; % i)
    t.start()
    threads.append(t)
  [t.join() for t in threads]
  total = 0
  for _ in range(4):
    total += q.get()
  print(total)
def normal(l):
  total = sum(l)
  print(total)
if __name__ == &#39;__main__&#39;:
  l = list(range(1000000))
  s_t = time.time()
  normal(l*4)
  print(&#39;normal: &#39;,time.time()-s_t)
  s_t = time.time()
  multithreading(l)
  print(&#39;multithreading: &#39;, time.time()-s_t)
Copier après la connexion

1.6 线程锁 Lock

如果线程1得到了结果,想要让线程2继续使用1的结果进行处理,则需要对1lock,等到1执行完,再开始执行线程2。一般来说对share memory即对共享内存进行加工处理时会用到lock。


import threading
def job1():
  global A, lock #全局变量
  lock.acquire() #开始lock
  for i in range(10):
    A += 1
    print(&#39;job1&#39;, A)
  lock.release() #释放
def job2(): 
  global A, lock
  lock.acquire()
  for i in range(10):
    A += 10
    print(&#39;job2&#39;, A)
  lock.release()
if __name__ == &#39;__main__&#39;:
  lock = threading.Lock()
  A = 0
  t1 = threading.Thread(target=job1)
  t2 = threading.Thread(target=job2)
  t1.start()
  t2.start()
  t1.join()
  t2.join()
Copier après la connexion

运行结果如下所示:

总结

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Les annotations des paramètres Python peuvent-elles utiliser des chaînes? Les annotations des paramètres Python peuvent-elles utiliser des chaînes? Apr 01, 2025 pm 08:39 PM

Utilisation alternative des annotations des paramètres Python Dans la programmation Python, les annotations des paramètres sont une fonction très utile qui peut aider les développeurs à mieux comprendre et utiliser les fonctions ...

Comment les scripts Python effacent-ils la sortie en position de curseur à un emplacement spécifique? Comment les scripts Python effacent-ils la sortie en position de curseur à un emplacement spécifique? Apr 01, 2025 pm 11:30 PM

Comment les scripts Python effacent-ils la sortie en position de curseur à un emplacement spécifique? Lors de l'écriture de scripts Python, il est courant d'effacer la sortie précédente à la position du curseur ...

Python multiplateform de bureau de bureau de bureau: quelle bibliothèque GUI est la meilleure pour vous? Python multiplateform de bureau de bureau de bureau: quelle bibliothèque GUI est la meilleure pour vous? Apr 01, 2025 pm 05:24 PM

Choix de la bibliothèque de développement d'applications de bureau multiplateforme Python De nombreux développeurs Python souhaitent développer des applications de bureau pouvant s'exécuter sur Windows et Linux Systems ...

Dessin graphique de sablier Python: comment éviter les erreurs variables non définies? Dessin graphique de sablier Python: comment éviter les erreurs variables non définies? Apr 01, 2025 pm 06:27 PM

Précision avec Python: Source de sablier Dessin graphique et vérification d'entrée Cet article résoudra le problème de définition variable rencontré par un novice Python dans le programme de dessin graphique de sablier. Code...

Pourquoi mon code ne peut-il pas faire renvoyer les données par l'API? Comment résoudre ce problème? Pourquoi mon code ne peut-il pas faire renvoyer les données par l'API? Comment résoudre ce problème? Apr 01, 2025 pm 08:09 PM

Pourquoi mon code ne peut-il pas faire renvoyer les données par l'API? En programmation, nous rencontrons souvent le problème du retour des valeurs nulles lorsque l'API appelle, ce qui n'est pas seulement déroutant ...

Comment utiliser la technologie Python et OCR pour essayer de casser des codes de vérification complexes? Comment utiliser la technologie Python et OCR pour essayer de casser des codes de vérification complexes? Apr 01, 2025 pm 10:18 PM

Exploration des codes de vérification de fissuration utilisant Python dans les interactions quotidiennes du réseau, les codes de vérification sont un mécanisme de sécurité courant pour empêcher la manipulation malveillante des programmes automatisés ...

See all articles