Maison > Java > javaDidacticiel > Exemple d'analyse de l'algorithme génétique Java pour sortir du labyrinthe

Exemple d'analyse de l'algorithme génétique Java pour sortir du labyrinthe

黄舟
Libérer: 2017-09-14 10:40:47
original
1640 Les gens l'ont consulté

Cet article présente d'abord en détail ce qu'est un algorithme génétique, puis utilise l'idée d'un algorithme génétique pour analyser et utiliser des algorithmes génétiques pour résoudre des problèmes de labyrinthe. Les amis dans le besoin peuvent s'y référer

Génétique. L'algorithme est une simulation de la théorie de l'évolution biologique de Darwin. Le modèle informatique du processus d'évolution biologique de la sélection naturelle et des mécanismes génétiques est une méthode de recherche de solutions optimales en simulant le processus d'évolution naturelle. Il peut résoudre de nombreux problèmes, tels que les valeurs maximales et minimales des équations mathématiques, les problèmes de sac à dos, les problèmes d'emballage des bacs, etc. Les algorithmes génétiques sont également très fréquemment utilisés dans le développement de jeux, et de nombreuses IA de jeux utilisent des algorithmes génétiques pour le codage.

Pour autant que je le comprenne, l'algorithme génétique simule le processus évolutif guidé par le principe magique de la « survie du plus fort » dans la nature. Les bons gènes ont ainsi plus de possibilités de se reproduire, à mesure que la reproduction se déroule. , , les populations biologiques convergeront vers une tendance. L'hybridation génétique et la mutation au cours du processus de reproduction biologique fourniront de meilleures séquences génétiques à la population, de cette manière, la tendance à la reproduction de la population sera « les vagues derrière le fleuve Yangtze poussent les vagues en avant, et chaque génération devient plus forte que la précédente ». génération précédente", au lieu d'être limité uniquement par les ancêtres. Les meilleurs gènes. Le programme peut obtenir la solution optimale au problème en simulant ce processus (mais il se peut qu'elle ne soit pas obtenue). Pour utiliser ce processus pour résoudre le problème, vous devez construire un génome initial, initialiser un score de condition physique (une mesure de la qualité du gène) pour chaque gène, puis sélectionner deux gènes parents du génome initial (en fonction de la condition physique score, l'algorithme * est utilisé pour sélectionner) pour la reproduction. Sur la base d'un certain taux d'hybridation (la probabilité d'hybridation du gène parent) et du taux de mutation (la probabilité de mutation du gène enfant), ces deux gènes parents généreront. deux gènes enfants, puis placez ces deux gènes dans la population, où une génération de reproduction est terminée et le processus de reproduction est répété jusqu'à ce que la population converge ou que le score de condition physique atteigne le maximum.

Ensuite, nous examinerons un exemple d'utilisation d'un algorithme génétique pour sortir d'un labyrinthe.

Le code est le suivant :


import java.awt.Color;
import java.awt.Graphics;
import java.awt.GridLayout;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
@SuppressWarnings("serial")
public class MazeProblem extends JFrame{
 //当前基因组
 private static List<Gene> geneGroup = new ArrayList<>();
 private static Random random = new Random();
 private static int startX = 2;
 private static int startY = 0;
 private static int endX = 7;
 private static int endY = 14;
 //杂交率
 private static final double CROSSOVER_RATE = 0.7;
 //变异率
 private static final double MUTATION_RATE = 0.0001;
 //基因组初始个数
 private static final int POP_SIZE = 140;
 //基因长度
 private static final int CHROMO_LENGTH = 70;
 //最大适应性分数的基因
 private static Gene maxGene = new Gene(CHROMO_LENGTH);
 //迷宫地图
 private static int[][] map = {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
       {1,0,1,0,0,0,0,0,1,1,1,0,0,0,1},
       {5,0,0,0,0,0,0,0,1,1,1,0,0,0,1},
       {1,0,0,0,1,1,1,0,0,1,0,0,0,0,1},
       {1,0,0,0,1,1,1,0,0,0,0,0,1,0,1},
       {1,1,0,0,1,1,1,0,0,0,0,0,1,0,1},
       {1,0,0,0,0,1,0,0,0,0,1,1,1,0,1},
       {1,0,1,1,0,0,0,1,0,0,0,0,0,0,8},
       {1,0,1,1,0,0,0,1,0,0,0,0,0,0,1},
       {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};
 private static int MAP_WIDTH = 15;
 private static int MAP_HEIGHT = 10;
 private List<JLabel> labels = new ArrayList<>();
 public MazeProblem(){
  // 初始化
  setSize(700, 700);
  setDefaultCloseOperation(DISPOSE_ON_CLOSE);
  setResizable(false);
  getContentPane().setLayout(null);
  JPanel panel = new JPanel();
  panel.setLayout(new GridLayout(MAP_HEIGHT,MAP_WIDTH));
  panel.setBounds(10, 10, MAP_WIDTH*40, MAP_HEIGHT*40);
  getContentPane().add(panel);
  for(int i=0;i<MAP_HEIGHT;i++){
   for(int j=0;j<MAP_WIDTH;j++){
    JLabel label = new JLabel();
    Color color = null;
    if(map[i][j] == 1){
     color = Color.black;
    }
    if(map[i][j] == 0){
     color = Color.GRAY;
    }
    if(map[i][j] == 5 || map[i][j] ==8){
     color = Color.red;
    }
    label.setBackground(color);
    label.setOpaque(true);
    panel.add(label);
    labels.add(label);
   }
  }
 }
 @Override
 public void paint(Graphics g) {
  super.paint(g);
  //画出路径
  int[] gene = maxGene.getGene();
  int curX = startX;
  int curY = startY;
  for(int i=0;i<gene.length;i+=2){
   //上
   if(gene[i] == 0 && gene[i+1] == 0){
    if(curX >=1 && map[curX-1][curY] == 0){
     curX --;
    }
   }
   //下
   else if(gene[i] == 0 && gene[i+1] == 1){
    if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){
     curX ++;
    }
   }
   //左
   else if(gene[i] == 1 && gene[i+1] == 0){
    if(curY >=1 && map[curX][curY-1] == 0){
     curY --;
    }
   } 
   //右
   else{
    if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){
     curY ++;
    }
   }
   labels.get(curX*MAP_WIDTH+curY).setBackground(Color.BLUE);
  }
 }
 public static void main(String[] args) {
  //初始化基因组
  init();
  while(maxGene.getScore() < 1){
   //选择进行交配的两个基因
   int p1 = getParent(geneGroup);
   int p2 = getParent(geneGroup);
   //用*转动法选择两个基因进行交配,杂交和变异
   mate(p1,p2);
  }
  new MazeProblem().setVisible(true);
 }
 /**
  * 根据路径获得适应性分数
  * @param path
  * @return
  */
 private static double getScore(int[] gene){
  double result = 0;
  int curX = startX;
  int curY = startY;
  for(int i=0;i<gene.length;i+=2){
   //上
   if(gene[i] == 0 && gene[i+1] == 0){
    if(curX >=1 && map[curX-1][curY] == 0){
     curX --;
    }
   }
   //下
   else if(gene[i] == 0 && gene[i+1] == 1){
    if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){
     curX ++;
    }
   }
   //左
   else if(gene[i] == 1 && gene[i+1] == 0){
    if(curY >=1 && map[curX][curY-1] == 0){
     curY --;
    }
   } 
   //右
   else{
    if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){
     curY ++;
    }
   }
  }
  double x = Math.abs(curX - endX);
  double y = Math.abs(curY - endY);
  //如果和终点只有一格距离则返回1
  if((x == 1&& y==0) || (x==0&&y==1)){
   return 1;
  }
  //计算适应性分数
  result = 1/(x+y+1);
  return result;
 }
 /**
  * 基因初始化
  */
 private static void init(){
  for(int i=0;i<POP_SIZE;i++){
   Gene gene = new Gene(CHROMO_LENGTH);
   double score = getScore(gene.getGene());
   if(score > maxGene.getScore()){
    maxGene = gene;
   }
   gene.setScore(score);
   geneGroup.add(gene);
  }
 }
 /**
  * 根据适应性分数随机获得进行交配的父类基因下标
  * @param list
  * @return
  */
 private static int getParent(List<Gene> list){
  int result = 0;
  double r = random.nextDouble();
  double score;
  double sum = 0;
  double totalScores = getTotalScores(geneGroup);
  for(int i=0;i<list.size();i++){
   Gene gene = list.get(i);
   score = gene.getScore();
   sum += score/totalScores;
   if(sum >= r){
    result = i;
    return result;
   }
  }
  return result;
 }
 /**
  * 获得全部基因组的适应性分数总和
  * @param list
  * @return
  */
 private static double getTotalScores(List<Gene> list){
  double result = 0;
  for(int i=0;i<list.size();i++){
   result += list.get(i).getScore();
  }
  return result;
 }
 /**
  * 两个基因进行交配
  * @param p1
  * @param p2
  */
 private static void mate(int n1,int n2){
  Gene p1 = geneGroup.get(n1);
  Gene p2 = geneGroup.get(n2);
  Gene c1 = new Gene(CHROMO_LENGTH);
  Gene c2 = new Gene(CHROMO_LENGTH);
  int[] gene1 = new int[CHROMO_LENGTH];
  int[] gene2 = new int[CHROMO_LENGTH];
  for(int i=0;i<CHROMO_LENGTH;i++){
   gene1[i] = p1.getGene()[i];
   gene2[i] = p2.getGene()[i];
  }
  //先根据杂交率决定是否进行杂交
  double r = random.nextDouble();
  if(r >= CROSSOVER_RATE){
   //决定杂交起点
   int n = random.nextInt(CHROMO_LENGTH);
   for(int i=n;i<CHROMO_LENGTH;i++){
    int tmp = gene1[i];
    gene1[i] = gene2[i];
    gene2[i] = tmp;
   }
  }
  //根据变异率决定是否
  r = random.nextDouble();
  if(r >= MUTATION_RATE){
   //选择变异位置
   int n = random.nextInt(CHROMO_LENGTH);
   if(gene1[n] == 0){
    gene1[n] = 1;
   }
   else{
    gene1[n] = 0;
   }
   if(gene2[n] == 0){
    gene2[n] = 1;
   }
   else{
    gene2[n] = 0;
   }
  }
  c1.setGene(gene1);
  c2.setGene(gene2);
  double score1 = getScore(c1.getGene());
  double score2 = getScore(c2.getGene());
  if(score1 >maxGene.getScore()){
   maxGene = c1;
  }
  if(score2 >maxGene.getScore()){
   maxGene = c2;
  }
  c1.setScore(score1);
  c2.setScore(score2);
  geneGroup.add(c1);
  geneGroup.add(c2);
 }
}
/**
 * 基因
 * @author ZZF
 *
 */
class Gene{
 //染色体长度
 private int len;
 //基因数组
 private int[] gene;
 //适应性分数
 private double score;
 public Gene(int len){
  this.len = len;
  gene = new int[len];
  Random random = new Random();
  //随机生成一个基因序列
  for(int i=0;i<len;i++){
   gene[i] = random.nextInt(2);
  }
  //适应性分数设置为0
  this.score = 0;
 }
 public int getLen() {
  return len;
 }
 public void setLen(int len) {
  this.len = len;
 }
 public int[] getGene() {
  return gene;
 }
 public void setGene(int[] gene) {
  this.gene = gene;
 }
 public double getScore() {
  return score;
 }
 public void setScore(double score) {
  this.score = score;
 }
 public void print(){
  StringBuilder sb = new StringBuilder();
  for(int i=0;i<gene.length;i+=2){
   if(gene[i] == 0 && gene[i+1] == 0){
    sb.append("上");
   }
   //下
   else if(gene[i] == 0 && gene[i+1] == 1){
    sb.append("下");
   }
   //左
   else if(gene[i] == 1 && gene[i+1] == 0){
    sb.append("左");
   } 
   //右
   else{
    sb.append("右");
   }
  }
  System.out.println(sb.toString());
 }
}
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal