Une brève discussion sur plusieurs méthodes de tri de numpy array_python

韦小宝
Libérer: 2017-12-16 13:32:49
original
3253 Les gens l'ont consulté

Cet article présente principalement plusieurs méthodes de tri des tableaux numpy. Il implique une brève introduction à numpy et comment créer des tableaux. Il a une certaine valeur de référence. Les amis intéressés par numpy peuvent s'y référer.

Une brève introduction

Le système NumPy est une extension open source de calcul de tableaux pour Python. Cet outil peut être utilisé pour stocker et traiter de grandes matrices beaucoup plus efficacement que la structure de liste imbriquée de Python (qui peut également être utilisée pour représenter des matrices).

Créer un tableau

Créer un tableau à une dimension :

data = np.array([1,3,4,8]) 

Afficher les dimensions du tableau

data.shape

Afficher le type de tableau

data.dtype

Obtenir ou modifier les éléments du tableau par index

data[1] Obtenir l'élément<code>data[1] 获取元素<br>data[1] = 'a' 修改元素 data[1] = 'a' Modifier l'élément 

Créer un tableau bidimensionnel

data = np.array([[1,2,3],[4,5,6]]) Les deux éléments sont des listes
2.data = np.arange(10) Comme la plage de python, range renvoie une liste et arange renvoie un tableau de type tableau
3.data2 = data. reshape (2,5) Renvoie un tableau 2*5. Ce n'est pas une copie du tableau mais une référence. Il renvoie simplement une vue différente du tableau. Si les données changent, data2 changera également

<.>

Créer un tableau spécial

data = np.zeros((2,2)) Créer un tableau bidimensionnel 2*2 de tous les zéros<p>data = np.ones((2,3,3,) ) Créez un tableau tridimensionnel avec tous les 1 <code>data = np.zeros((2,2)) 创建2*2全为0的2维数组<br>data = np.ones((2,3,3,)) 创建全为1的三维数组<br>data = np.eye(4) 创建4*4的对角数组,对角元素为1,其它都为0<br>data = np.eye(4) Créez un tableau diagonal 4*4, l'élément diagonal étant 1 et les autres étant 0

Conversion de tableau

data = np.arange(16).reshape(4,4) 将0-16的移位数组转换为4*4的数组 

Ou liste à trier, python propose plusieurs fonctions de tri, les caractéristiques sont expliquées ci-dessous ; 🎜>

Tableau bidimensionnel a :

1,

Utilisation : a.sort

1 4
3 1
Copier après la connexion
Description du paramètre :

axe : trier dans la direction du tableau, 0 signifie par ligne, 1 signifie par colonne

ndarray.sort(axis=-1,kind=&#39;quicksort&#39;,order=None)genre : algorithme de tri, fournit un tri rapide, un tri mixte, tas sort

ordre : ne fait pas référence à l'ordre, nous l'analyserons lorsque nous l'utiliserons à l'avenir

Effet : trier le tableau a, et a

est directement modifié après le tri. Par exemple :

>>a.sort(axis=1)
>>print a
Copier après la connexion
2,

Utilisation :

1 4
1 3
Copier après la connexion

Description du paramètre :

a : Tableau à trier, les autres sont identiques 1numpy.sort(a,axis=-1,kind=&#39;quicksort&#39;,order=None)

Effet : Trier le tableau a et renvoyer un tableau trié (même dimension que a), a reste inchangé

numpy.sort(a)Par exemple :

numpy.argsort(a, axis=-1,kind='quicksort',order=None)

Utilisation : numpy.argsort(a)

Description du paramètre : Identique à 2
>>print numpy.sort(a,axis=1)
1 4
1 3
>>print a
1 4
3 1
Copier après la connexion

Effet : Trier tableau a et renvoie un index trié, a reste inchangé

Par exemple :

4. 🎜>Explication : La fonction de tri intégrée peut être utilisée pour les listes, les dictionnaires, etc.

iterable : C'est un type itérable

cmp : Fonction utilisée pour la comparaison. est déterminé par la clé. Il a une valeur par défaut et itère un élément de la collection
>>print numpy.argsort(a,axis=1)
0 1
1 0
Copier après la connexion

key : utilise un certain attribut et une certaine fonction de l'élément de liste pour effectuer l'opération, avec une valeur par défaut, est un élément. dans la collection itérative ;

reverse : règle de tri reverse=True ou reverse=False, False par défaut (de petit à grand). sorted(iterable,cmp=None,key=None,reverse=False)

Valeur de retour : Il s'agit d'un type itérable trié, le même que itérable ;

Par exemple : b est un dictionnaire

b:

{' a':2,'c':1,'b':3}

Trier b :

visible : Retours une liste

Résumé

>>c=sorted(b.iteritems(),key=operator.itemgetter(1),reverse=False)
>>print c[(&#39;c&#39;, 1), (&#39;a&#39;, 2), (&#39;b&#39;, 3)]
Copier après la connexion
Ce qui précède est l'intégralité du contenu de cet article sur plusieurs méthodes de tri des tableaux numpy, j'espère qu'il sera utile. pour vous. Tout le monde aide. Les amis intéressés peuvent continuer à se référer à d'autres sujets connexes sur ce site. S'il y a des lacunes, veuillez laisser un message pour le signaler. Merci les amis de soutenir ce site !

Recommandations associées :

Python Scientific Computing - Démarrage rapide avec Numpy

Pourquoi le tableau numpy est-il si rapide ?

Notes d'installation et d'utilisation de la bibliothèque Python NumPy

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal