Maison développement back-end tutoriel php Résumé de l'algorithme de traversée PHP

Résumé de l'algorithme de traversée PHP

Dec 20, 2017 pm 04:29 PM
php 总结 算法

Les exemples de cet article décrivent la représentation matricielle de contiguïté des graphiques implémentés en PHP et plusieurs algorithmes de traversée simples. Partagez-le avec tout le monde pour votre référence, les détails sont les suivants :

Cette fois, j'ai préparé pour vous quelques représentations matricielles de contiguïté des graphiques d'implémentation PHP et plusieurs algorithmes de traversée simples. Pour aider chacun à aller toujours plus loin sur le chemin du PHP, faisons un tour d’horizon.

Dans le développement Web, la structure de données du graphe est beaucoup moins utilisée que celle de l'arbre, mais elle apparaît souvent dans certaines entreprises. Ce qui suit présente plusieurs algorithmes de recherche de chemin de graphe et les implémente avec PHP.

L'algorithme de Freud parcourt principalement l'ensemble des sommets en fonction du poids des arêtes adjacentes entre les points. Si les deux points ne sont pas connectés, le poids sera infini. De cette manière, le chemin point à point le plus court peut être obtenu par multiple. traversées. Le chemin est le plus simple à comprendre logiquement et est relativement simple à mettre en œuvre. La complexité temporelle est O(n^3);

Algorithme de Djisktra, l'algorithme classique utilisé pour implémenter l'itinéraire le plus court dans OSPF, l'algorithme de Djisktra. L'essence est un algorithme glouton, qui parcourt et étend continuellement l'ensemble de chemins de sommets S. Une fois qu'un chemin point à point plus court est trouvé, le chemin le plus court d'origine dans S est remplacé. Une fois tous les parcours terminés, S est le chemin le plus court. ensemble de tous les sommets. Dijie La complexité temporelle de l'algorithme de Stella est O(n^2)

L'algorithme de Kruskal construit un arbre couvrant minimum dans le graphe pour connecter tous les sommets du graphe. obtenu. La complexité temporelle Le degré est O(N*logN);

<?php
/**
 * PHP 实现图邻接矩阵
 */
class MGraph{
  private $vexs; //顶点数组
  private $arc; //边邻接矩阵,即二维数组
  private $arcData; //边的数组信息
  private $direct; //图的类型(无向或有向)
  private $hasList; //尝试遍历时存储遍历过的结点
  private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
  private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
  private $primVexs; //prim算法时保存顶点
  private $primArc; //prim算法时保存边
  private $krus;//kruscal算法时保存边的信息
  public function MGraph($vexs, $arc, $direct = 0){
    $this->vexs = $vexs;
    $this->arcData = $arc;
    $this->direct = $direct;
    $this->initalizeArc();
    $this->createArc();
  }
  private function initalizeArc(){
    foreach($this->vexs as $value){
      foreach($this->vexs as $cValue){
        $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
      }
    }
  }
  //创建图 $direct:0表示无向图,1表示有向图
  private function createArc(){
    foreach($this->arcData as $key=>$value){
      $strArr = str_split($key);
      $first = $strArr[0];
      $last = $strArr[1];
      $this->arc[$first][$last] = $value;
      if(!$this->direct){
        $this->arc[$last][$first] = $value;
      }
    }
  }
  //floyd算法
  public function floyd(){
    $path = array();//路径数组
    $distance = array();//距离数组
    foreach($this->arc as $key=>$value){
      foreach($value as $k=>$v){
        $path[$key][$k] = $k;
        $distance[$key][$k] = $v;
      }
    }
    for($j = 0; $j < count($this->vexs); $j ++){
      for($i = 0; $i < count($this->vexs); $i ++){
        for($k = 0; $k < count($this->vexs); $k ++){
          if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
            $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
            $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
          }
        }
      }
    }
    return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
    $final = array();
    $pre = array();//要查找的结点的前一个结点数组
    $weight = array();//权值和数组
    foreach($this->arc[$this->vexs[0]] as $k=>$v){
      $final[$k] = 0;
      $pre[$k] = $this->vexs[0];
      $weight[$k] = $v;
    }
    $final[$this->vexs[0]] = 1;
    for($i = 0; $i < count($this->vexs); $i ++){
      $key = 0;
      $min = $this->infinity;
      for($j = 1; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && $weight[$temp] < $min){
          $key = $temp;
          $min = $weight[$temp];
        }
      }
      $final[$key] = 1;
      for($j = 0; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
          $pre[$temp] = $key;
          $weight[$temp] = $min + $this->arc[$key][$temp];
        }
      }
    }
    return $pre;
  }
  //kruscal算法
  private function kruscal(){
    $this->krus = array();
    foreach($this->vexs as $value){
      $krus[$value] = 0;
    }
    foreach($this->arc as $key=>$value){
      $begin = $this->findRoot($key);
      foreach($value as $k=>$v){
        $end = $this->findRoot($k);
        if($begin != $end){
          $this->krus[$begin] = $end;
        }
      }
    }
  }
  //查找子树的尾结点
  private function findRoot($node){
    while($this->krus[$node] > 0){
      $node = $this->krus[$node];
    }
    return $node;
  }
  //prim算法,生成最小生成树
  public function prim(){
    $this->primVexs = array();
    $this->primArc = array($this->vexs[0]=>0);
    for($i = 1; $i < count($this->vexs); $i ++){
      $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
      $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
    }
    for($i = 0; $i < count($this->vexs); $i ++){
      $min = $this->infinity;
      $key;
      foreach($this->vexs as $k=>$v){
        if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
          $key = $v;
          $min = $this->primArc[$v];
        }
      }
      $this->primArc[$key] = 0;
      foreach($this->arc[$key] as $k=>$v){
        if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
          $this->primArc[$k] = $v;
          $this->primVexs[$k] = $key;
        }
      }
    }
    return $this->primVexs;
  }
  //一般算法,生成最小生成树
  public function bst(){
    $this->primVexs = array($this->vexs[0]);
    $this->primArc = array();
    next($this->arc[key($this->arc)]);
    $key = NULL;
    $current = NULL;
    while(count($this->primVexs) < count($this->vexs)){
      foreach($this->primVexs as $value){
        foreach($this->arc[$value] as $k=>$v){
          if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
            if($key == NULL || $v < current($current)){
              $key = $k;
              $current = array($value . $k=>$v);
            }
          }
        }
      }
      $this->primVexs[] = $key;
      $this->primArc[key($current)] = current($current);
      $key = NULL;
      $current = NULL;
    }
    return array(&#39;vexs&#39;=>$this->primVexs, &#39;arc&#39;=>$this->primArc);
  }
  //一般遍历
  public function reserve(){
    $this->hasList = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
      }
      foreach($value as $k=>$v){
        if($v == 1 && !in_array($k, $this->hasList)){
          $this->hasList[] = $k;
        }
      }
    }
    foreach($this->vexs as $v){
      if(!in_array($v, $this->hasList))
        $this->hasList[] = $v;
    }
    return implode($this->hasList);
  }
  //广度优先遍历
  public function bfs(){
    $this->hasList = array();
    $this->queue = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
        $this->queue[] = $value;
        while(!empty($this->queue)){
          $child = array_shift($this->queue);
          foreach($child as $k=>$v){
            if($v == 1 && !in_array($k, $this->hasList)){
              $this->hasList[] = $k;
              $this->queue[] = $this->arc[$k];
            }
          }
        }
      }
    }
    return implode($this->hasList);
  }
  //执行深度优先遍历
  public function excuteDfs($key){
    $this->hasList[] = $key;
    foreach($this->arc[$key] as $k=>$v){
      if($v == 1 && !in_array($k, $this->hasList))
        $this->excuteDfs($k);
    }
  }
  //深度优先遍历
  public function dfs(){
    $this->hasList = array();
    foreach($this->vexs as $key){
      if(!in_array($key, $this->hasList))
        $this->excuteDfs($key);
    }
    return implode($this->hasList);
  }
  //返回图的二维数组表示
  public function getArc(){
    return $this->arc;
  }
  //返回结点个数
  public function getVexCount(){
    return count($this->vexs);
  }
}
$a = array(&#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;d&#39;, &#39;e&#39;, &#39;f&#39;, &#39;g&#39;, &#39;h&#39;, &#39;i&#39;);
$b = array(&#39;ab&#39;=>&#39;10&#39;, &#39;af&#39;=>&#39;11&#39;, &#39;bg&#39;=>&#39;16&#39;, &#39;fg&#39;=>&#39;17&#39;, &#39;bc&#39;=>&#39;18&#39;, &#39;bi&#39;=>&#39;12&#39;, &#39;ci&#39;=>&#39;8&#39;, &#39;cd&#39;=>&#39;22&#39;, &#39;di&#39;=>&#39;21&#39;, &#39;dg&#39;=>&#39;24&#39;, &#39;gh&#39;=>&#39;19&#39;, &#39;dh&#39;=>&#39;16&#39;, &#39;de&#39;=>&#39;20&#39;, &#39;eh&#39;=>&#39;7&#39;,&#39;fe&#39;=>&#39;26&#39;);//键为边,值权值
$test = new MGraph($a, $b);
print_r($test->bst());
Copier après la connexion

résultat de la ligne :

Array
(
  [vexs] => Array
    (
      [0] => a
      [1] => b
      [2] => f
      [3] => i
      [4] => c
      [5] => g
      [6] => h
      [7] => e
      [8] => d
    )
  [arc] => Array
    (
      [ab] => 10
      [af] => 11
      [bi] => 12
      [ic] => 8
      [bg] => 16
      [gh] => 19
      [he] => 7
      [hd] => 16
    )
)
Copier après la connexion

Je pense que vous maîtrisez la méthode après avoir lu ces cas. informations passionnantes, veuillez prêter attention aux autres sites Web chinois php Articles connexes !

Lecture connexe :

Arbre binaireAlgorithme de parcours-Exemple de php

Arbre binaire implémenté par php Algorithme de parcoursExplication détaillée de l'exemple de code

Post-ordre non récursif de l'arbre binaireAlgorithme de parcoursExplication détaillée de exemple de compétences code_javascript

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Guide d'installation et de mise à niveau de PHP 8.4 pour Ubuntu et Debian Guide d'installation et de mise à niveau de PHP 8.4 pour Ubuntu et Debian Dec 24, 2024 pm 04:42 PM

PHP 8.4 apporte plusieurs nouvelles fonctionnalités, améliorations de sécurité et de performances avec une bonne quantité de dépréciations et de suppressions de fonctionnalités. Ce guide explique comment installer PHP 8.4 ou mettre à niveau vers PHP 8.4 sur Ubuntu, Debian ou leurs dérivés. Bien qu'il soit possible de compiler PHP à partir des sources, son installation à partir d'un référentiel APT comme expliqué ci-dessous est souvent plus rapide et plus sécurisée car ces référentiels fourniront les dernières corrections de bogues et mises à jour de sécurité à l'avenir.

Comment configurer Visual Studio Code (VS Code) pour le développement PHP Comment configurer Visual Studio Code (VS Code) pour le développement PHP Dec 20, 2024 am 11:31 AM

Visual Studio Code, également connu sous le nom de VS Code, est un éditeur de code source gratuit – ou environnement de développement intégré (IDE) – disponible pour tous les principaux systèmes d'exploitation. Avec une large collection d'extensions pour de nombreux langages de programmation, VS Code peut être c

7 fonctions PHP que je regrette de ne pas connaître auparavant 7 fonctions PHP que je regrette de ne pas connaître auparavant Nov 13, 2024 am 09:42 AM

Si vous êtes un développeur PHP expérimenté, vous aurez peut-être le sentiment d'y être déjà allé et de l'avoir déjà fait. Vous avez développé un nombre important d'applications, débogué des millions de lignes de code et peaufiné de nombreux scripts pour réaliser des opérations.

Comment analysez-vous et traitez-vous HTML / XML dans PHP? Comment analysez-vous et traitez-vous HTML / XML dans PHP? Feb 07, 2025 am 11:57 AM

Ce tutoriel montre comment traiter efficacement les documents XML à l'aide de PHP. XML (Language de balisage extensible) est un langage de balisage basé sur le texte polyvalent conçu à la fois pour la lisibilité humaine et l'analyse de la machine. Il est couramment utilisé pour le stockage de données et

Expliquez les jetons Web JSON (JWT) et leur cas d'utilisation dans les API PHP. Expliquez les jetons Web JSON (JWT) et leur cas d'utilisation dans les API PHP. Apr 05, 2025 am 12:04 AM

JWT est une norme ouverte basée sur JSON, utilisée pour transmettre en toute sécurité des informations entre les parties, principalement pour l'authentification de l'identité et l'échange d'informations. 1. JWT se compose de trois parties: en-tête, charge utile et signature. 2. Le principe de travail de JWT comprend trois étapes: la génération de JWT, la vérification de la charge utile JWT et l'analyse. 3. Lorsque vous utilisez JWT pour l'authentification en PHP, JWT peut être généré et vérifié, et les informations sur le rôle et l'autorisation des utilisateurs peuvent être incluses dans l'utilisation avancée. 4. Les erreurs courantes incluent une défaillance de vérification de signature, l'expiration des jetons et la charge utile surdimensionnée. Les compétences de débogage incluent l'utilisation des outils de débogage et de l'exploitation forestière. 5. L'optimisation des performances et les meilleures pratiques incluent l'utilisation des algorithmes de signature appropriés, la définition des périodes de validité raisonnablement,

Programme PHP pour compter les voyelles dans une chaîne Programme PHP pour compter les voyelles dans une chaîne Feb 07, 2025 pm 12:12 PM

Une chaîne est une séquence de caractères, y compris des lettres, des nombres et des symboles. Ce tutoriel apprendra à calculer le nombre de voyelles dans une chaîne donnée en PHP en utilisant différentes méthodes. Les voyelles en anglais sont a, e, i, o, u, et elles peuvent être en majuscules ou en minuscules. Qu'est-ce qu'une voyelle? Les voyelles sont des caractères alphabétiques qui représentent une prononciation spécifique. Il y a cinq voyelles en anglais, y compris les majuscules et les minuscules: a, e, i, o, u Exemple 1 Entrée: String = "TutorialSpoint" Sortie: 6 expliquer Les voyelles dans la chaîne "TutorialSpoint" sont u, o, i, a, o, i. Il y a 6 yuans au total

Expliquez la liaison statique tardive en PHP (statique: :). Expliquez la liaison statique tardive en PHP (statique: :). Apr 03, 2025 am 12:04 AM

Liaison statique (statique: :) ​​implémente la liaison statique tardive (LSB) dans PHP, permettant à des classes d'appel d'être référencées dans des contextes statiques plutôt que de définir des classes. 1) Le processus d'analyse est effectué au moment de l'exécution, 2) Recherchez la classe d'appel dans la relation de succession, 3) il peut apporter des frais généraux de performance.

Quelles sont les méthodes PHP Magic (__construct, __ destruct, __ call, __get, __set, etc.) et fournir des cas d'utilisation? Quelles sont les méthodes PHP Magic (__construct, __ destruct, __ call, __get, __set, etc.) et fournir des cas d'utilisation? Apr 03, 2025 am 12:03 AM

Quelles sont les méthodes magiques de PHP? Les méthodes magiques de PHP incluent: 1. \ _ \ _ Construct, utilisé pour initialiser les objets; 2. \ _ \ _ Destruct, utilisé pour nettoyer les ressources; 3. \ _ \ _ Appel, gérer les appels de méthode inexistants; 4. \ _ \ _ GET, Implémentez l'accès à l'attribut dynamique; 5. \ _ \ _ SET, Implémentez les paramètres d'attribut dynamique. Ces méthodes sont automatiquement appelées dans certaines situations, améliorant la flexibilité et l'efficacité du code.

See all articles