


Comment implémenter une carte thermique visuelle en python
Cet article présente principalement comment implémenter une carte thermique visuelle en python. L'éditeur pense que c'est plutôt bien. Maintenant, je vais le partager avec vous et le donner comme référence. Suivons l'éditeur pour y jeter un œil
Carte thermique
1. Utilisez la carte thermique pour voir la similitude de plusieurs fonctionnalités dans le tableau de données. Reportez-vous aux paramètres et à l'adresse officiels de l'API :
seaborn.heatmap(data, vmin=None, vmax=None,cmap=None, center=None, robuste=False, annot=None , fmt ='.2g', annot_kws=Aucun,linewidths=0, linecolor='white', cbar=True, cbar_kws=Aucun, cbar_ax=Aucun,square=False, xticklabels='auto', yticklabels='auto', mask= Aucun, ax=None,**kwargs)
(1) Paramètres de données d'entrée de la carte thermique :
données : ensemble de données matricielles , oui, c'est un tableau de numpy, ou cela peut être un DataFrame de pandas. S'il s'agit d'un DataFrame, les informations d'index/colonne de df correspondront respectivement aux colonnes et aux lignes de la carte thermique, c'est-à-dire que pt.index est l'étiquette de ligne de la carte thermique et pt.columns est l'étiquette de colonne du carte thermique
(2) Paramètres de couleur du bloc de matrice de carte thermique :
vmax, vmin : respectivement la plage maximale et minimale de valeurs de couleur de la carte thermique. La valeur par défaut est déterminée en fonction de la valeur dans la table de données
cmap : Mappage des nombres à l'espace colorimétrique, la valeur est le nom de la carte de couleurs ou l'objet de couleur dans le package matplotlib, ou une liste représentant les couleurs ; modifiez la valeur par défaut du paramètre : définissez en fonction du paramètre central
center : lorsqu'il existe des différences dans les valeurs du tableau de données, définissez la valeur d'alignement du centre des couleurs de la carte thermique en définissant la valeur centrale, vous pouvez ajuster manuellement la profondeur globale de la couleur de l'image générée ; lors de la définition des données centrales, en cas de débordement de données. Les paramètres vmax et vmin changeront automatiquement
robust : la valeur par défaut est False ; s'il est faux et que les valeurs de vmin et vmax ne sont pas définies, la plage de cartographie des couleurs de la carte thermique est basée sur le paramètre Quantile robuste, au lieu du paramètre de valeur extrême
(3) Matrice de carte thermique paramètres d'annotation du bloc :
annot (abréviation d'annoter) : pris par défaut Valeur False si c'est True, écrivez les données dans chaque carré de la heat map ; écrire les données de position correspondantes de la matrice dans chaque carré de la carte thermique
fmt : format de chaîne Code, format de données pour identifier les nombres sur la matrice, comme conserver plusieurs chiffres après la virgule décimale
annot_kws : La valeur par défaut est False ; si elle est True, définissez la taille, la couleur et la police des nombres sur la matrice de carte thermique, paramètres de police du package matplotlib sous la classe de texte :
(4) Paramètres d'espacement et de ligne d'espacement entre les blocs matriciels de la carte thermique :
largeurs de ligne : Définir la carte thermique " La taille de l'écart entre " les patchs matriciels représentant les relations de fonctionnalités par paires "
linecolor : La couleur de la ligne qui divise chaque patch matriciel sur la carte thermique. La valeur par défaut est « blanc »
(5) Paramètres de la barre d'échelle de couleur de la carte thermique :
cbar : s'il faut dessiner une barre d'échelle de couleurs sur le côté de la carte thermique, la valeur par défaut est True
cbar_kws : lors du dessin de barres d'échelle de couleurs sur le côté de la carte thermique, les paramètres de police pertinents, la valeur par défaut est Aucun
cbar_ax : lors du dessin des barres d'échelle de couleur sur le côté de la carte thermique, les paramètres de position de la barre d'échelle, la valeur par défaut is None
(6) square : Définissez la forme de la matrice de la carte thermique, la valeur par défaut est False
xticklabels, yticklabels:xticklabels contrôle chaque colonne Sortie des noms d'étiquettes ; yticklabels contrôle la sortie des noms d'étiquettes pour chaque ligne. La valeur par défaut est automatique. Si True, le nom de colonne du DataFrame est utilisé comme nom d’étiquette. Si False, les noms d’étiquettes de ligne ne sont pas ajoutés. S'il s'agit d'une liste, le nom de l'étiquette est remplacé par le contenu indiqué dans la liste. S'il s'agit d'un nombre entier K, étiquetez toutes les K étiquettes sur le graphique. S'il est automatique, l'espacement des étiquettes sera automatiquement sélectionné et la partie (ou la totalité) des noms d'étiquettes qui ne se chevauchent pas sera affichée
masque : contrôle si une certaine matrice. Le bloc s’affiche. La valeur par défaut est Aucune. S'il s'agit d'un DataFrame booléen, couvrez la position True dans le DataFrame avec un
ax blanc : définissez l'axe de coordonnées du dessin. Généralement, lorsque vous dessinez plusieurs sous-graphiques, vous devez modifier les coordonnées des différents. sous-graphes. Valeurs
**kwargs : Tous les autres arguments de mots-clés sont transmis à ax.pcolormesh
Paramètres de couleur du bloc de matrice Heatmap
#cmap(颜色) import matplotlib.pyplot as plt % matplotlib inline f, (ax1,ax2) = plt.subplots(figsize = (6,4),nrows=2) # cmap用cubehelix map颜色 cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) sns.heatmap(pt, linewidths = 0.05, ax = ax1, vmax=900, vmin=0, cmap=cmap) ax1.set_title('cubehelix map') ax1.set_xlabel('') ax1.set_xticklabels([]) #设置x轴图例为空值 ax1.set_ylabel('kind') # cmap用matplotlib colormap sns.heatmap(pt, linewidths = 0.05, ax = ax2, vmax=900, vmin=0, cmap='rainbow') # rainbow为 matplotlib 的colormap名称 ax2.set_title('matplotlib colormap') ax2.set_xlabel('region') ax2.set_ylabel('kind')
#center的用法(颜色)f, (ax1,ax2) = plt.subplots(figsize = (6, 4),nrows=2) cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) sns.heatmap(pt, linewidths = 0.05, ax = ax1, cmap=cmap, center=None ) ax1.set_title('center=None') ax1.set_xlabel('') ax1.set_xticklabels([]) #设置x轴图例为空值ax1.set_ylabel('kind')# 当center设置小于数据的均值时,生成的图片颜色要向0值代表的颜色一段偏移sns.heatmap(pt, linewidths = 0.05, ax = ax2, cmap=cmap, center=200) ax2.set_title('center=3000') ax2.set_xlabel('region') ax2.set_ylabel('kind')
#robust的用法(颜色)f, (ax1,ax2) = plt.subplots(figsize = (6,4),nrows=2) cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) sns.heatmap(pt, linewidths = 0.05, ax = ax1, cmap=cmap, center=None, robust=False ) ax1.set_title('robust=False') ax1.set_xlabel('') ax1.set_xticklabels([]) #设置x轴图例为空值ax1.set_ylabel('kind') sns.heatmap(pt, linewidths = 0.05, ax = ax2, cmap=cmap, center=None, robust=True ) ax2.set_title('robust=True') ax2.set_xlabel('region') ax2.set_ylabel('kind')
Paramètres d'annotation de bloc de matrice de carte thermique
#annot(矩阵上数字),annot_kws(矩阵上数字的大小颜色字体)matplotlib包text类下的字体设置import numpy as np np.random.seed(20180316) x = np.random.randn(4, 4) f, (ax1, ax2) = plt.subplots(figsize=(6,6),nrows=2) sns.heatmap(x, annot=True, ax=ax1) sns.heatmap(x, annot=True, ax=ax2, annot_kws={'size':9,'weight':'bold', 'color':'blue'})# Keyword arguments for ax.text when annot is True. http://stackoverflow.com/questions/35024475/seaborn-heatmap-key-words
#fmt(字符串格式代码,矩阵上标识数字的数据格式,比如保留小数点后几位数字)import numpy as np np.random.seed(0) x = np.random.randn(4,4) f, (ax1, ax2) = plt.subplots(figsize=(6,6),nrows=2) sns.heatmap(x, annot=True, ax=ax1) sns.heatmap(x, annot=True, fmt='.1f', ax=ax2)
热力图矩阵块之间间隔及间隔线参数
#linewidths(矩阵小块的间隔),linecolor(切分热力图矩阵小块的线的颜色)import matplotlib.pyplot as plt f, ax = plt.subplots(figsize = (6,4)) cmap = sns.cubehelix_palette(start = 1, rot = 3, gamma=0.8, as_cmap = True) sns.heatmap(pt, cmap = cmap, linewidths = 0.05, linecolor= 'red', ax = ax) ax.set_title('Amounts per kind and region') ax.set_xlabel('region') ax.set_ylabel('kind')
#xticklabels,yticklabels横轴和纵轴的标签名输出import matplotlib.pyplot as plt f, (ax1,ax2) = plt.subplots(figsize = (5,5),nrows=2) cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) p1 = sns.heatmap(pt, ax=ax1, cmap=cmap, center=None, xticklabels=False) ax1.set_title('xticklabels=None',fontsize=8) p2 = sns.heatmap(pt, ax=ax2, cmap=cmap, center=None, xticklabels=2, yticklabels=list(range(5))) ax2.set_title('xticklabels=2, yticklabels is a list',fontsize=8) ax2.set_xlabel('region')
#mask对某些矩阵块的显示进行覆盖 f, (ax1,ax2) = plt.subplots(figsize = (5,5),nrows=2) cmap = sns.cubehelix_palette(start = 1.5, rot = 3, gamma=0.8, as_cmap = True) p1 = sns.heatmap(pt, ax=ax1, cmap=cmap, xticklabels=False, mask=None) ax1.set_title('mask=None') ax1.set_ylabel('kind') p2 = sns.heatmap(pt, ax=ax2, cmap=cmap, xticklabels=True, mask=(pt<800)) #mask对pt进行布尔型转化,结果为True的位置用白色覆盖 ax2.set_title('mask: boolean DataFrame') ax2.set_xlabel('region') ax2.set_ylabel('kind')
用mask实现:突出显示某些数据
f,(ax1,ax2) = plt.subplots(figsize=(4,6),nrows=2) x = np.array([[1,2,3],[2,0,1],[-1,-2,0]]) sns.heatmap(x, annot=True, ax=ax1) sns.heatmap(x, mask=x < 1, ax=ax2, annot=True, annot_kws={"weight": "bold"}) #把小于1的区域覆盖掉
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

VS Code est disponible sur Mac. Il a des extensions puissantes, l'intégration GIT, le terminal et le débogueur, et offre également une multitude d'options de configuration. Cependant, pour des projets particulièrement importants ou un développement hautement professionnel, le code vs peut avoir des performances ou des limitations fonctionnelles.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.
