Maison développement back-end Tutoriel Python Comment attribuer des valeurs uniformes aux éléments du tableau dans numpy

Comment attribuer des valeurs uniformes aux éléments du tableau dans numpy

Apr 09, 2018 pm 03:59 PM
numpy 元素 统一

Cette fois, je vais vous montrer comment attribuer des valeurs uniformes aux éléments du tableau dans numpy, et quelles sont les précautions pour attribuer des valeurs uniformes aux éléments du tableau dans numpy. Ce qui suit est un exemple pratique. cas, jetons un coup d'oeil.

L'opération globale d'affectation de tableau dans Numpy a toujours été un peu déroutante pour moi, et souvent je ne la comprends pas profondément. Aujourd'hui, je vais énumérer les points de connaissances pertinents séparément et les résumer.

Regardons deux petits exemples d'extraits de code :

Exemple 1 :

In [2]: arr =np.empty((8,4))
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
In [4]: arr[1] = 1
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
    [ 1., 1., 1., 1.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
Copier après la connexion

Exemple 2 :

In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304,  7.74860419e-304])
In [9]: arr1 = 0
In [10]: arr1
Out[10]: 0
Copier après la connexion

Ces deux paragraphes semblent avoir un comportement incohérent. En général, le modèle de compréhension des balises orienté objet peut toujours être compris.

Dans l'exemple 1, l'étiquette après l'ajout de index fait en fait référence à la zone de stockage spécifique, tandis que dans l'exemple 2, une étiquette est utilisée directement. Alors, comment implémenter l'affectation globale d'un tableau unidimensionnel de cette manière ? En fait, il vous suffit d'indexer tous les éléments.

La méthode spécifique est la suivante :

In [11]: arr1 =np.empty(2)
In [12]: arr1
Out[12]: array([0., 0.])
In [13]: arr1[:]
Out[13]: array([0., 0.])
In [14]: arr1[:] =0
In [15]: arr1
Out[15]: array([0., 0.])
Copier après la connexion

Cela semble assez simple, mais cela ne prend pas. un peu plus approfondie, l'analyse est effectivement un peu difficile à comprendre.

Je pense que vous maîtrisez la méthode après avoir lu le cas dans cet article. Pour des informations plus intéressantes, veuillez prêter attention aux autres articles connexes sur le site Web chinois de php !

Lecture recommandée :

Comment Python Numpy exploite les tableaux et les matrices

Comment fusionner les tableaux numpy de Python

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Blue Prince: Comment se rendre au sous-sol
1 Il y a quelques mois By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1664
14
Tutoriel PHP
1268
29
Tutoriel C#
1248
24
Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Guide étape par étape sur la façon d'installer NumPy dans PyCharm et de tirer le meilleur parti de ses fonctionnalités Feb 18, 2024 pm 06:38 PM

Apprenez étape par étape à installer NumPy dans PyCharm et à utiliser pleinement ses puissantes fonctions Préface : NumPy est l'une des bibliothèques de base pour le calcul scientifique en Python. Elle fournit des objets de tableau multidimensionnels hautes performances et diverses fonctions nécessaires à son exécution. opérations de base sur la fonction des tableaux. Il s’agit d’une partie importante de la plupart des projets de science des données et d’apprentissage automatique. Cet article vous expliquera comment installer NumPy dans PyCharm et démontrera ses puissantes fonctionnalités à travers des exemples de code spécifiques. Étape 1 : Installez PyCharm. Tout d'abord, nous

Mise à niveau de la version numpy : un guide détaillé et facile à suivre Mise à niveau de la version numpy : un guide détaillé et facile à suivre Feb 25, 2024 pm 11:39 PM

Comment mettre à niveau la version numpy : tutoriel facile à suivre, nécessite des exemples de code concrets Introduction : NumPy est une bibliothèque Python importante utilisée pour le calcul scientifique. Il fournit un puissant objet tableau multidimensionnel et une série de fonctions associées qui peuvent être utilisées pour effectuer des opérations numériques efficaces. À mesure que de nouvelles versions sont publiées, de nouvelles fonctionnalités et corrections de bugs sont constamment disponibles. Cet article décrira comment mettre à niveau votre bibliothèque NumPy installée pour obtenir les dernières fonctionnalités et résoudre les problèmes connus. Étape 1 : Vérifiez la version actuelle de NumPy au début

Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Guide d'installation de Numpy : résoudre les problèmes d'installation en un seul article Feb 21, 2024 pm 08:15 PM

Guide d'installation de Numpy : Un article pour résoudre les problèmes d'installation, nécessite des exemples de code spécifiques Introduction : Numpy est une puissante bibliothèque de calcul scientifique en Python. Elle fournit des objets et des outils de tableau multidimensionnels efficaces pour exploiter les données de tableau. Cependant, pour les débutants, l'installation de Numpy peut créer une certaine confusion. Cet article vous fournira un guide d'installation de Numpy pour vous aider à résoudre rapidement les problèmes d'installation. 1. Installez l'environnement Python : Avant d'installer Numpy, vous devez d'abord vous assurer que Py est installé.

Analyse approfondie des opérations de découpage numpy et de leur application en combat réel Analyse approfondie des opérations de découpage numpy et de leur application en combat réel Jan 26, 2024 am 08:52 AM

Explication détaillée de la méthode d'opération de découpage numpy et guide d'application pratique Introduction : Numpy est l'une des bibliothèques de calcul scientifique les plus populaires en Python, offrant de puissantes fonctions d'opération de tableau. Parmi elles, l’opération de découpage est l’une des fonctions les plus couramment utilisées et les plus puissantes de numpy. Cet article présentera en détail la méthode d'opération de découpage dans numpy et démontrera l'utilisation spécifique de l'opération de découpage à travers un guide d'application pratique. 1. Introduction à la méthode d'opération de découpage numpy L'opération de découpage numpy fait référence à l'obtention d'un sous-ensemble d'un tableau en spécifiant une plage d'index. Sa forme de base est :

Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Découvrez la méthode secrète pour désinstaller rapidement la bibliothèque NumPy Jan 26, 2024 am 08:32 AM

Le secret pour désinstaller rapidement la bibliothèque NumPy est révélé. Des exemples de code spécifiques sont nécessaires. NumPy est une puissante bibliothèque de calcul scientifique Python largement utilisée dans des domaines tels que l'analyse de données, le calcul scientifique et l'apprentissage automatique. Cependant, nous pouvons parfois être amenés à désinstaller la bibliothèque NumPy, que ce soit pour mettre à jour la version ou pour d'autres raisons. Cet article présentera quelques méthodes pour désinstaller rapidement la bibliothèque NumPy et fournira des exemples de code spécifiques. Méthode 1 : utiliser pip pour désinstaller pip est un outil de gestion de packages Python qui peut être utilisé pour installer, mettre à niveau et

Conversion entre Tensor et Numpy : exemples et applications Conversion entre Tensor et Numpy : exemples et applications Jan 26, 2024 am 11:03 AM

Exemples et applications de conversion Tensor et Numpy TensorFlow est un framework d'apprentissage en profondeur très populaire, et Numpy est la bibliothèque principale pour le calcul scientifique Python. Étant donné que TensorFlow et Numpy utilisent tous deux des tableaux multidimensionnels pour manipuler les données, dans les applications pratiques, nous devons souvent effectuer une conversion entre les deux. Cet article expliquera comment effectuer une conversion entre TensorFlow et Numpy à travers des exemples de code spécifiques et expliquera son utilisation dans des applications pratiques. tête

Guide de désinstallation de la bibliothèque NumPy pour éviter les conflits et les erreurs Guide de désinstallation de la bibliothèque NumPy pour éviter les conflits et les erreurs Jan 26, 2024 am 10:22 AM

La bibliothèque NumPy est l'une des bibliothèques importantes de Python pour le calcul scientifique et l'analyse de données. Cependant, nous devrons parfois désinstaller la bibliothèque NumPy, peut-être parce que nous devons mettre à niveau la version ou résoudre des conflits avec d'autres bibliothèques. Cet article expliquera aux lecteurs comment désinstaller correctement la bibliothèque NumPy pour éviter d'éventuels conflits et erreurs, et démontrera le processus de fonctionnement à travers des exemples de code spécifiques. Avant de commencer à désinstaller la bibliothèque NumPy, nous devons nous assurer que l'outil pip est installé, car pip est l'outil de gestion de packages pour Python.

PyCharm vs NumPy : conseils clés pour optimiser l'efficacité de la programmation Python PyCharm vs NumPy : conseils clés pour optimiser l'efficacité de la programmation Python Feb 19, 2024 pm 01:43 PM

La combinaison parfaite de PyCharm et NumPy : compétences essentielles pour améliorer l'efficacité de la programmation Python Introduction : Python est devenu l'un des langages de programmation dominants dans le domaine de la science des données et de l'apprentissage automatique. En tant qu'élément central de la bibliothèque de calcul scientifique de Python, NumPy nous fournit des opérations de tableau et des fonctions de calcul numérique efficaces. Pour utiliser pleinement la puissance de NumPy, nous avons besoin d'un puissant environnement de développement intégré (IDE) pour nous aider dans la programmation. PyCharm est le plus populaire de la communauté Python

See all articles